861 resultados para Fish parasite
Resumo:
Coral reefs are one of the most diverse habitats in the world [1], yet our understanding of the processes affecting their biodiversity is limited [1-3]. At the local scale, cleaner fish are thought to have a disproportionate effect, in relation to their abundance and size, on the activity of many other fish species, but confirmation of this species' effect on local fish diversity has proved elusive. The cleaner fish Labroides dimidiatus has major effects on fish activity patterns [4] and may indirectly affect fish demography through the removal of large numbers of parasites [5, 6]. Here we show that small reefs where L. dimidiatus had been experimentally excluded for 18 months had half the species diversity of fish and one-fourth the abundance of individuals. Only fish that move among reefs, however, were affected. These fish include large species that themselves can affect other reef organisms [2, 7]. In contrast, the distribution of resident fish was not affected by cleaner fish. Thus, many fish appear to choose reefs based on the presence of cleaner fish. Our findings indicate that a single small [8] and not very abundant [9] fish has a strong influence on the movement patterns, habitat choice, activity, and local diversity and abundance of a wide variety of reef fish species.
Resumo:
We investigated the burst swimming performance of five species of Antarctic fish at -1.0degreesC. The species studied belonged to the suborder, Notothenioidei, and from the families, Nototheniidae and Bathydraconidae. Swimming performance of the fish was assessed over the initial 300 ms of a startle response using surgically attached miniature accelerometers. Escape responses in all fish consisted of a C-type fast start; consisting of an initial pronounced bending of the body into a C-shape, followed by one or more complete tail-beats and an un-powered glide. We found significant differences in the swimming performance of the five species of fish examined, with average maximum swimming velocities (U-max) ranging from 0.91 to 1.39 m s(-1) and maximum accelerations (A(max)) ranging from 10.6 to 15.6 m s(-2). The cryopelagic species, Pagothenia borchgrevinki, produced the fastest escape response, reaching a U-max and A(max) of 1.39 m s(-1) and 15.6 m s(-2), respectively. We also compared the body shapes of each fish species with their measures of maximum burst performance. The dragonfish, Gymnodraco acuticeps, from the family Bathdraconidae, did not conform to the pattern observed for the other four fish species belonging to the family Nototheniidae. However, we found a negative relationship between buoyancy of the fish species and burst swimming performance. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Toxic (Gobiodon spp.) and non-toxic (Paragobiodon xanthosomus) gobies became infected with external parasites (gnathiid isopods) at equal rates in a laboratory experiment. Parasites were evenly distributed over the body of P. xanthosomus but were mostly confined to the fins of Gobiodon spp., where toxin glands are less abundant. Skin toxins were not associated with the rate of infection but their distribution did appear to influence the site of parasite attachment. (C) 2003 The Fisheries Society of the British Isles.
Resumo:
A new species of Allopodocotyle Pritchard, 1966 is described from the intestine and pyloric caeca of Parequula melbournensis (Gerreidae) caught from the waters off South and Western Australia. The new species is distinguished from other species by its larger eggs, broader form, pre-bifurcal genital pore and a number of other measurable features that are discussed. Of the species that share morphological similarities with Allopodocotyle skoliorchis n. sp., it is the only species known from a gerreid; all the other species are from serranids.
Resumo:
A new species of Podocotyloides is described from Sillago bassensis caught off the coast of Western Australia. This is the second report of a species of this genus from Australian waters but the first of a new species. P. victori n. sp. is one of four species whose vitelline follicles extend into the forebody. It is distinguished from the other three species with vitelline follicles in the forebody by its relatively shorter forebody, smaller eggs and bipartite seminal vesicle. Pedunculotrema Fischthal & Thomas, 1970 is reduced to synonymy with Podocotyloides Yamaguti, 1934.
Resumo:
The parasite fauna of Spanish mackerel Scomberomorus commerson from 10 sites across northern Australia and one site in Indonesia, was examined to evaluate the degree of movement and subsequent stock structure of the fish. Kupang fish (Indonesia) had very few Terranova spp.. Grillotia branchi, Otobothrium cysticum or Pterobothrium sp. compared to Australian fish, indicating that no Australian fish enter the Kupang fishery. Univariate and discriminant function analysis of four 'temporary' parasite species, the copepod Pseudocyenoides armatus and the monogeneans Gotocotyla bivaginalis, Pricea multae and Pseudothoracocotyla ovalis, demonstrated little similarity between areas of northern Australia, indicating minimal short-term exchange between neighbouring groups of S. commerson. Analyses of five 'permanent' parasite species, the larval helminths G. branchi, O. cysticum, Pterobothrium sp., Callitetrarhynchus gracilis and Paranybelinia balli, also revealed large differences between areas thus indicating long-term separation. There are at least six parasitological stocks across northern Australia: Fog Bay/Bathurst Island, Cape Wessel. Groote/Sir Edward Pellew. Mornington Island, Weipa. and the Torres Strait. The occurrence of a few irregular fish in the samples suggested that LIP to 5% of fish moved between stocks during their lifetime. The similarity of within-school variability to that between schools showed that the fish do not form long-term school associations. (C) 2003 The Fisheries Society of the British Isles.
Resumo:
In the previous two papers in this three-part series, we have examined visual pigments, ocular media transmission, and colors of the coral reef fish of Hawaii. This paper first details aspects of the light field and background colors at the microhabitat level on Hawaiian reefs and does so from the perspective and scale of fish living on the reef. Second, information from all three papers is combined in an attempt to examine trends in the visual ecology of reef inhabitants. Our goal is to begin to see fish the way they appear to other fish. Observations resulting from the combination of results in all three papers include the following. Yellow and blue colors on their own are strikingly well matched to backgrounds on the reef such as coral and bodies of horizontally viewed water. These colors, therefore, depending on context, may be important in camouflage as well as conspicuousness. The spectral characteristics of fish colors are correlated to the known spectral sensitivities in reef fish single cones and are tuned for maximum signal reliability when viewed against known backgrounds. The optimal positions of spectral sensitivity in a modeled dichromatic visual system are generally close to the sensitivities known for reef fish. Models also predict that both UV-sensitive and red-sensitive cone types are advantageous for a variety of tasks. UV-sensitive cones are known in some reef fish, red-sensitive cones have yet to be found. Labroid colors, which appear green or blue to us, may he matched to the far-red component of chlorophyll reflectance for camouflage. Red cave/hole dwelling reef fish are relatively poorly matched to the background they are often viewed against but this may be visually irrelevant. The model predicts that the task of distinguishing green algae from coral is optimized with a relatively long wavelength visual pigment pair. Herbivorous grazers whose visual pigments are known possess the longest sensitivities so far found. Labroid complex colors are highly contrasting complementary colors close up but combine, because of the spatial addition, which results from low visual resolution, at distance, to match background water colors remarkably well. Therefore, they are effective for simultaneous communication and camouflage.
Resumo:
The thermal and hydrolytic degradation of electrospun gelatin membranes cross-linked with glutaraldehyde in vapor phase has been studied. In vitro degradation of gelatin membranes was evaluated in phosphate buffer saline solution at 37 ºC. After 15 days under these conditions, a weight loss of 68 % was observed, attributed to solvation and depolymerization of the main polymeric chains. Thermal degradation kinetics of the gelatin raw material and as-spun electrospun membranes showed that the electrospinning processing conditions do not influence polymer degradation. However, for cross-linked samples a decrease in the activation energy was observed, associated with the effect of glutaraldehyde cross-linking reaction in the inter- and intra-molecular hydrogen bonds of the protein. It is also shown that the electrospinning process does not affect the formation of the helical structure of gelatin chains.
Resumo:
Development of suitable membranes is a fundamental requisite for tissue and biomedical engineering applications. This work presents fish gelatin random and aligned electrospun membranes cross-linked with glutaraldehyde (GA). It was observed that the fiber average diameter and the morphology is not influenced by the GA exposure time and presents fibers with an average diameter around 250 nm. Moreover, when the gelatin mats are immersed in a phosphate buffered saline solution (PBS), they can retain as much as 12 times its initial weight of solution almost instantaneously, but the material microstructure of the fiber mats changes from the characteristic fibrous to an almost spherical porous structure. Cross-linked gelatin electrospun fiber mats and films showed a water vapor permeability of 1.37 ± 0.02 and 0.13 ± 0.10 (g.mm)/(m2.h.kPa), respectively. Finally, the processing technique and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Preliminary cell culture results showed good cell adhesion and proliferation in the cross-linked random and aligned gelatin fiber mats.
Resumo:
The reaction of nine vector species of Chagas' disease to infection by seven different Trypanosoma cruzi strains; Berenice, Y, FL, CL, S. Felipe, Colombiana and Gávea, are examined and compared. On the basis of the insects' ability to establish and maintain the infection, vector species could be divided into two distinct groups which differ in their reaction to an acute infection by T. cruzi. While the proportion of positive bugs was found to be low in Triatoma infestans and Triatoma dimidiata it was high, ranging from 96.9% to 100% in the group of wild (Rhodnius neglectus, Triatoma rubrovaria)and essentially sylvatic vectors in process of adaptation to human dwellings, maintained under control following successful insecticidal elimination of Triatoma infestans (Panstrongylus megistus, Triatoma sordida and Triatoma pseudomaculata). An intermediate position is held by Triatoma brasiliensis and Rhodnius prolixus. This latter has been found to interchange between domestic and sylvatic environments. The most important finding is the strikingly good reaction between each species of the sylvatic bugs and practically all T. cruzi strains herein studied, thus indicating that the factors responsible for the excellent reaction of P.megistus to infection by Y strain, as previously reported also come into operation in the reaction of the same vector species to acute infections by five of the remaining T.cruzi strains. Comparison or data reported by other investigators with those herein described form the basis of the discussion of Dipetalogaster maximus as regards its superiority as a xenodiagnostic agent.
Resumo:
Previous studies (1982,1987) have emphasized the superiority of sylvatic vector species over domestic species as xenodiagnostic agents in testing hosts with acute or chronic infections by T. cruzi "Y" stock. The present study, which is unique in that it contains data on both infectivity rates produced by the same stock in 11 different vector species and also the reaction of the same vector species to seven different parasite stocks, establishes the general validity of linking efficiency of xenodiagnosis to the biotope of its agent. For example, infectivity rates produced by "São Felipe" stock varied from 82.5% to 98.3% in sylvatic vectors but decreased to 42.5% to 71.3% in domestic species. "Colombiana" stock produced in the same sylvatic vectors infectivity rates ranging from 12.5% to 45%. These shrank to 5%-22.5% in domestic bugs. The functional role of the biotope in the vector-parasite interaction has not been eluddated. But since this phenomenon has been observed to be stable and easy to reproduce, it leads us to believe that the results obtained are valid. Data presented also provide increasing evidence that the infectivity rates exhibited by bugs from xenodiagnosis in chronic hosts, are parasite stock specific. For example, infectivity rates produced by "Berenice", "Y", "FL" and "CL" varied in R. neglectus from 26.3% to 75%; in P. megistus from 56.3% to 83.8%; in T. sordida from 28.8% to 58.8% in T. pseudomaculata from 41.3% to 66.3% and in T. rubrovaria from 48.8% to 85%. Data from xenodiagnosis in the same hosts, carrying acute infections by the same parasite stocks, gave the five sylvatic vectors a positive rating of approximately 100%, thus suggesting that the heavy loads of parasites circulating in the acute hosts obscured the characteristic interspecific differences for the parasite stock. Nonetheless these latter were revealed in the same hosts with chronic infections stimulated by very low numbers of the same parasite stocks. Certain observations here described lead us to speculate as to the possibility of further results from other parasite stocks, allowing the association of the infectivity rates produced in bugs by different parasite stocks with the isoenzymic patterns revealed by these stocks.
Resumo:
Malaria, caused by Plasmodium falciparum (P. falciparum), ranks as one of the most baleful infectious diseases worldwide. New antimalarial treatments are needed to face existing or emerging drug resistant strains. Protein degradation appears to play a significant role during the asexual intraerythrocytic developmental cycle (IDC) of P. falciparum. Inhibition of the ubiquitin proteasome system (UPS), a major intracellular proteolytic pathway, effectively reduces infection and parasite replication. P. falciparum and erythrocyte UPS coexist during IDC but the nature of their relationship is largely unknown. We used an approach based on Tandem Ubiquitin-Binding Entities (TUBEs) and 1D gel electrophoresis followed by mass spectrometry to identify major components of the TUBEs-associated ubiquitin proteome of both host and parasite during ring, trophozoite and schizont stages. Ring-exported protein (REX1), a P. falciparum protein located in Maurer's clefts and important for parasite nutrient import, was found to reach a maximum level of ubiquitylation in trophozoites stage. The Homo sapiens (H. sapiens) TUBEs associated ubiquitin proteome decreased during the infection, whereas the equivalent P. falciparum TUBEs-associated ubiquitin proteome counterpart increased. Major cellular processes such as DNA repair, replication, stress response, vesicular transport and catabolic events appear to be regulated by ubiquitylation along the IDC P. falciparum infection.
Resumo:
Anaemia has a significant impact on child development and mortality and is a severe public health problem in most countries in sub-Saharan Africa. Nutritional and infectious causes of anaemia are geographically variable and anaemia maps based on information on the major aetiologies of anaemia are important for identifying communities most in need and the relative contribution of major causes. We investigated the consistency between ecological and individual-level approaches to anaemia mapping, by building spatial anaemia models for children aged ≤15 years using different modeling approaches. We aimed to a) quantify the role of malnutrition, malaria, Schistosoma haematobium and soil-transmitted helminths (STH) for anaemia endemicity in children aged ≤15 years and b) develop a high resolution predictive risk map of anaemia for the municipality of Dande in Northern Angola. We used parasitological survey data on children aged ≤15 years to build Bayesian geostatistical models of malaria (PfPR≤15), S. haematobium, Ascaris lumbricoides and Trichuris trichiura and predict small-scale spatial variation in these infections. The predictions and their associated uncertainty were used as inputs for a model of anemia prevalence to predict small-scale spatial variation of anaemia. Stunting, PfPR≤15, and S. haematobium infections were significantly associated with anaemia risk. An estimated 12.5%, 15.6%, and 9.8%, of anaemia cases could be averted by treating malnutrition, malaria, S. haematobium, respectively. Spatial clusters of high risk of anaemia (>86%) were identified. Using an individual-level approach to anaemia mapping at a small spatial scale, we found that anaemia in children aged ≤15 years is highly heterogeneous and that malnutrition and parasitic infections are important contributors to the spatial variation in anemia risk. The results presented in this study can help inform the integration of the current provincial malaria control program with ancillary micronutrient supplementation and control of neglected tropical diseases, such as urogenital schistosomiasis and STH infection.
Resumo:
Anaemia is known to have an impact on child development and mortality and is a severe public health problem in most countries in sub-Saharan Africa. We investigated the consistency between ecological and individual-level approaches to anaemia mapping by building spatial anaemia models for children aged ≤15 years using different modelling approaches. We aimed to (i) quantify the role of malnutrition, malaria, Schistosoma haematobium and soil-transmitted helminths (STHs) in anaemia endemicity; and (ii) develop a high resolution predictive risk map of anaemia for the municipality of Dande in northern Angola. We used parasitological survey data for children aged ≤15 years to build Bayesian geostatistical models of malaria (PfPR≤15), S. haematobium, Ascaris lumbricoides and Trichuris trichiura and predict small-scale spatial variations in these infections. Malnutrition, PfPR≤15, and S. haematobium infections were significantly associated with anaemia risk. An estimated 12.5%, 15.6% and 9.8% of anaemia cases could be averted by treating malnutrition, malaria and S. haematobium, respectively. Spatial clusters of high risk of anaemia (>86%) were identified. Using an individual-level approach to anaemia mapping at a small spatial scale, we found that anaemia in children aged ≤15 years is highly heterogeneous and that malnutrition and parasitic infections are important contributors to the spatial variation in anaemia risk. The results presented in this study can help inform the integration of the current provincial malaria control programme with ancillary micronutrient supplementation and control of neglected tropical diseases such as urogenital schistosomiasis and STH infections.