902 resultados para Finite-Difference Method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory is called to fill the gap in research into stability and transition in flows over or through complex geometries. Historically, global linear instability has been (and still is) concerned with solution of multi-dimensional eigenvalue problems; the maturing of non-modal linear instability ideas in simple parallel flows during the last decade of last century2–4 has given rise to investigation of transient growth scenarios in an ever increasing variety of complex flows. After a brief exposition of the theory, connections are sought with established approaches for structure identification in flows, such as the proper orthogonal decomposition and topology theory in the laminar regime and the open areas for future research, mainly concerning turbulent and three-dimensional flows, are highlighted. Recent results obtained in our group are reported in both the time-stepping and the matrix-forming approaches to global linear theory. In the first context, progress has been made in implementing a Jacobian-Free Newton Krylov method into a standard finite-volume aerodynamic code, such that global linear instability results may now be obtained in compressible flows of aeronautical interest. In the second context a new stable very high-order finite difference method is implemented for the spatial discretization of the operators describing the spatial BiGlobal EVP, PSE-3D and the TriGlobal EVP; combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performing three-dimensional pin-by-pin full core calculations based on an improved solution of the multi-group diffusion equation is an affordable option nowadays to compute accurate local safety parameters for light water reactors. Since a transport approximation is solved, appropriate correction factors, such as interface discontinuity factors, are required to nearly reproduce the fully heterogeneous transport solution. Calculating exact pin-by-pin discontinuity factors requires the knowledge of the heterogeneous neutron flux distribution, which depends on the boundary conditions of the pin-cell as well as the local variables along the nuclear reactor operation. As a consequence, it is impractical to compute them for each possible configuration; however, inaccurate correction factors are one major source of error in core analysis when using multi-group diffusion theory. An alternative to generate accurate pin-by-pin interface discontinuity factors is to build a functional-fitting that allows incorporating the environment dependence in the computed values. This paper suggests a methodology to consider the neighborhood effect based on the Analytic Coarse-Mesh Finite Difference method for the multi-group diffusion equation. It has been applied to both definitions of interface discontinuity factors, the one based on the Generalized Equivalence Theory and the one based on Black-Box Homogenization, and for different few energy groups structures. Conclusions are drawn over the optimal functional-fitting and demonstrative results are obtained with the multi-group pin-by-pin diffusion code COBAYA3 for representative PWR configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic three-dimensional flows, which are inhomogeneous in two(and periodic in one)or all three spatial directions.After a brief exposition of the theory,some recent advances are reported. First, results are presented on the implementation of a Jacobian-free Newton–Krylov time-stepping method into a standard finite-volume aerodynamic code to obtain global linear instability results in flows of industrial interest. Second, connections are sought between established and more-modern approaches for structure identification in flows, such as proper orthogonal decomposition and Koopman modes analysis (dynamic mode decomposition), and the possibility to connect solutions of the eigenvalue problem obtained by matrix formation or time-stepping with those delivered by dynamic mode decomposition, residual algorithm, and proper orthogonal decomposition analysis is highlighted in the laminar regime; turbulent and three-dimensional flows are identified as open areas for future research. Finally, a new stable very-high-order finite-difference method is implemented for the spatial discretization of the operators describing the spatial biglobal eigenvalue problem, parabolized stability equation three-dimensional analysis, and the triglobal eigenvalue problem; it is shown that, combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the epoch-making "memoir" of Saint-Venant in 1855 the torsion of prismatic and cilindrical bars has reduced to a mathematical problem: the calculation of an analytical function satisfying prescribed boundary values. For over one century, till the first applications of the F.E.M. to the problem, the only possibility of study in irregularly shaped domains was the beatiful, but limitated, theory of complex function analysis, several functional approaches and the finite difference method. Nevertheless in 1963 Jaswon published an interestingpaper which was nearly lost between the splendid F. E.M. boom. The method was extended by Rizzo to more complicated problems and definitively incorporated to the scientific community background through several lecture-notes of Cruse recently published, but widely circulated during past years. The work of several researches has shown the tremendous possibilities of the method which is today a recognized alternative to the well established F .E. procedure. In fact, the first comprehensive attempt to cover the method, has been recently published in textbook form. This paper is a contribution to the implementation of a difficulty which arises if the isoparametric elements concept is applicated to plane potential problems with sharp corners in the boundary domain. In previous works, these problems was avoided using two principal approximations: equating the fluxes round the corner or establishing a binode element (in fact, truncating the corner). The first approximation distortes heavily the solution in thecorner neighbourhood, and a great amount of element is neccesary to reduce its influence. The second is better suited but the price payed is increasing the size of the system of equations to be solved. In this paper an alternative formulation, consistent with the shape function chosen in the isoparametric representation, is presented. For ease of comprehension the formulation has been limited to the linear element. Nevertheless its extension to more refined elements is straight forward. Also a direct procedure for the assembling of the equations is presented in an attempt to reduce the in-core computer requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una evolución del método de diferencias finitas ha sido el desarrollo del método de diferencias finitas generalizadas (MDFG) que se puede aplicar a mallas irregulares o nubes de puntos. En este método se emplea una expansión en serie de Taylor junto con una aproximación por mínimos cuadrados móviles (MCM). De ese modo, las fórmulas explícitas de diferencias para nubes irregulares de puntos se pueden obtener fácilmente usando el método de Cholesky. El MDFG-MCM es un método sin malla que emplea únicamente puntos. Una contribución de esta Tesis es la aplicación del MDFG-MCM al caso de la modelización de problemas anisótropos elípticos de conductividad eléctrica incluyendo el caso de tejidos reales cuando la dirección de las fibras no es fija, sino que varía a lo largo del tejido. En esta Tesis también se muestra la extensión del método de diferencias finitas generalizadas a la solución explícita de ecuaciones parabólicas anisótropas. El método explícito incluye la formulación de un límite de estabilidad para el caso de nubes irregulares de nodos que es fácilmente calculable. Además se presenta una nueva solución analítica para una ecuación parabólica anisótropa y el MDFG-MCM explícito se aplica al caso de problemas parabólicos anisótropos de conductividad eléctrica. La evidente dificultad de realizar mediciones directas en electrocardiología ha motivado un gran interés en la simulación numérica de modelos cardiacos. La contribución más importante de esta Tesis es la aplicación de un esquema explícito con el MDFG-MCM al caso de la modelización monodominio de problemas de conductividad eléctrica. En esta Tesis presentamos un algoritmo altamente eficiente, exacto y condicionalmente estable para resolver el modelo monodominio, que describe la actividad eléctrica del corazón. El modelo consiste en una ecuación en derivadas parciales parabólica anisótropa (EDP) que está acoplada con un sistema de ecuaciones diferenciales ordinarias (EDOs) que describen las reacciones electroquímicas en las células cardiacas. El sistema resultante es difícil de resolver numéricamente debido a su complejidad. Proponemos un método basado en una separación de operadores y un método sin malla para resolver la EDP junto a un método de Runge-Kutta para resolver el sistema de EDOs de la membrana y las corrientes iónicas. ABSTRACT An evolution of the method of finite differences has been the development of generalized finite difference (GFD) method that can be applied to irregular grids or clouds of points. In this method a Taylor series expansion is used together with a moving least squares (MLS) approximation. Then, the explicit difference formulae for irregular clouds of points can be easily obtained using a simple Cholesky method. The MLS-GFD is a mesh-free method using only points. A contribution of this Thesis is the application of the MLS-GFDM to the case of modelling elliptic anisotropic electrical conductivity problems including the case of real tissues when the fiber direction is not fixed, but varies throughout the tissue. In this Thesis the extension of the generalized finite difference method to the explicit solution of parabolic anisotropic equations is also given. The explicit method includes a stability limit formulated for the case of irregular clouds of nodes that can be easily calculated. Also a new analytical solution for homogeneous parabolic anisotropic equation has been presented and an explicit MLS- GFDM has been applied to the case of parabolic anisotropic electrical conductivity problems. The obvious difficulty of performing direct measurements in electrocardiology has motivated wide interest in the numerical simulation of cardiac models. The main contribution of this Thesis is the application of an explicit scheme based in the MLS-GFDM to the case of modelling monodomain electrical conductivity problems using operator splitting including the case of anisotropic real tissues. In this Thesis we present a highly efficient, accurate and conditionally stable algorithm to solve a monodomain model, which describes the electrical activity in the heart. The model consists of a parabolic anisotropic partial differential equation (PDE), which is coupled to systems of ordinary differential equations (ODEs) describing electrochemical reactions in the cardiac cells. The resulting system is challenging to solve numerically, because of its complexity. We propose a method based on operator splitting and a meshless method for solving the PDE together with a Runge-Kutta method for solving the system of ODE’s for the membrane and ionic currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La ecuación en derivadas parciales de advección difusión con reacción química es la base de los modelos de dispersión de contaminantes en la atmósfera, y los diferentes métodos numéricos empleados para su resolución han sido objeto de amplios estudios a lo largo de su desarrollo. En esta Tesis se presenta la implementación de un nuevo método conservativo para la resolución de la parte advectiva de la ecuación en derivadas parciales que modela la dispersión de contaminantes dentro del modelo mesoescalar de transporte químico CHIMERE. Este método está basado en una técnica de volúmenes finitos junto con una interpolación racional. La ventaja de este método es la conservación exacta de la masa transportada debido al empleo de la ley de conservación de masas. Para ello emplea una formulación de flujo basado en el cálculo de la integral ponderada dentro de cada celda definida para la discretización del espacio en el método de volúmenes finitos. Los resultados numéricos obtenidos en las simulaciones realizadas (implementando el modelo conservativo para la advección en el modelo CHIMERE) se han comparado con los datos observados de concentración de contaminantes registrados en la red de estaciones de seguimiento y medición distribuidas por la Península Ibérica. Los datos estadísticos de medición del error, la media normalizada y la media absoluta normalizada del error, presentan valores que están dentro de los rangos propuestos por la EPA para considerar el modelo preciso. Además, se introduce un nuevo método para resolver la parte advectivadifusiva de la ecuación en derivadas parciales que modeliza la dispersión de contaminantes en la atmósfera. Se ha empleado un método de diferencias finitas de alto orden para resolver la parte difusiva de la ecuación de transporte de contaminantes junto con el método racional conservativo para la parte advectiva en una y dos dimensiones. Los resultados obtenidos de la aplicación del método a diferentes situaciones incluyendo casos académicos y reales han sido comparados con la solución analítica de la ecuación de advección-difusión, demostrando que el nuevo método proporciona un resultado preciso para aproximar la solución. Por último, se ha desarrollado un modelo completo que contempla los fenómenos advectivo y difusivo con reacción química, usando los métodos anteriores junto con una técnica de diferenciación regresiva (BDF2). Esta técnica consiste en un método implícito multipaso de diferenciación regresiva de segundo orden, que nos permite resolver los problemas rígidos típicos de la química atmosférica, modelizados a través de sistemas de ecuaciones diferenciales ordinarias. Este método hace uso de la técnica iterativa Gauss- Seidel para obtener la solución de la parte implícita de la fórmula BDF2. El empleo de la técnica de Gauss-Seidel en lugar de otras técnicas comúnmente empleadas, como la iteración por el método de Newton, nos proporciona rapidez de cálculo y bajo consumo de memoria, ideal para obtener modelos operativos para la resolución de la cinética química atmosférica. ABSTRACT Extensive research has been performed to solve the atmospheric chemicaladvection- diffusion equation and different numerical methods have been proposed. This Thesis presents the implementation of an exactly conservative method for the advection equation in the European scale Eulerian chemistry transport model CHIMERE based on a rational interpolation and a finite volume algorithm. The advantage of the method is that the cell-integrated average is predicted via a flux formulation, thus the mass is exactly conserved. Numerical results are compared with a set of observation registered at some monitoring sites in Spain. The mean normalized bias and the mean normalized absolute error present values that are inside the range to consider an accurate model performance. In addition, it has been introduced a new method to solve the advectiondiffusion equation. It is based on a high-order accurate finite difference method to solve de diffusion equation together with a rational interpolation and a finite volume to solve the advection equation in one dimension and two dimensions. Numerical results obtained from solving several problems include academic and real atmospheric problems have been compared with the analytical solution of the advection-diffusion equation, showing that the new method give an efficient algorithm for solving such problems. Finally, a complete model has been developed to solve the atmospheric chemical-advection-diffusion equation, adding the conservative method for the advection equation, the high-order finite difference method for the diffusion equation and a second-order backward differentiation formula (BDF2) to solve the atmospheric chemical kinetics. The BDF2 is an implicit, second order multistep backward differentiation formula used to solve the stiff systems of ordinary differential equations (ODEs) from atmospheric chemistry. The Gauss-Seidel iteration is used for approximately solving the implicitly defined BDF solution, giving a faster tool than the more commonly used iterative modified Newton technique. This method implies low start-up costs and a low memory demand due to the use of Gauss-Seidel iteration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Situado en el límite entre Ingeniería, Informática y Biología, la mecánica computacional de las neuronas aparece como un nuevo campo interdisciplinar que potencialmente puede ser capaz de abordar problemas clínicos desde una perspectiva diferente. Este campo es multiescala por naturaleza, yendo desde la nanoescala (como, por ejemplo, los dímeros de tubulina) a la macroescala (como, por ejemplo, el tejido cerebral), y tiene como objetivo abordar problemas que son complejos, y algunas veces imposibles, de estudiar con medios experimentales. La modelización computacional ha sido ampliamente empleada en aplicaciones Neurocientíficas tan diversas como el crecimiento neuronal o la propagación de los potenciales de acción compuestos. Sin embargo, en la mayoría de los enfoques de modelización hechos hasta ahora, la interacción entre la célula y el medio/estímulo que la rodea ha sido muy poco explorada. A pesar de la tremenda importancia de esa relación en algunos desafíos médicos—como, por ejemplo, lesiones traumáticas en el cerebro, cáncer, la enfermedad del Alzheimer—un puente que relacione las propiedades electrofisiológicas-químicas y mecánicas desde la escala molecular al nivel celular todavía no existe. Con ese objetivo, esta investigación propone un marco computacional multiescala particularizado para dos escenarios respresentativos: el crecimiento del axón y el acomplamiento electrofisiológicomecánico de las neuritas. En el primer caso, se explora la relación entre los constituyentes moleculares del axón durante su crecimiento y sus propiedades mecánicas resultantes, mientras que en el último, un estímulo mecánico provoca deficiencias funcionales a nivel celular como consecuencia de sus alteraciones electrofisiológicas-químicas. La modelización computacional empleada en este trabajo es el método de las diferencias finitas, y es implementada en un nuevo programa llamado Neurite. Aunque el método de los elementos finitos es también explorado en parte de esta investigación, el método de las diferencias finitas tiene la flexibilidad y versatilidad necesaria para implementar mode los biológicos, así como la simplicidad matemática para extenderlos a simulaciones a gran escala con un coste computacional bajo. Centrándose primero en el efecto de las propiedades electrofisiológicas-químicas sobre las propiedades mecánicas, una versión adaptada de Neurite es desarrollada para simular la polimerización de los microtúbulos en el crecimiento del axón y proporcionar las propiedades mecánicas como función de la ocupación de los microtúbulos. Después de calibrar el modelo de crecimiento del axón frente a resultados experimentales disponibles en la literatura, las características mecánicas pueden ser evaluadas durante la simulación. Las propiedades mecánicas del axón muestran variaciones dramáticas en la punta de éste, donde el cono de crecimiento soporta las señales químicas y mecánicas. Bansándose en el conocimiento ganado con el modelo de diferencias finitas, y con el objetivo de ir de 1D a 3D, este esquema preliminar pero de una naturaleza innovadora allana el camino a futuros estudios con el método de los elementos finitos. Centrándose finalmente en el efecto de las propiedades mecánicas sobre las propiedades electrofisiológicas- químicas, Neurite es empleado para relacionar las cargas mecánicas macroscópicas con las deformaciones y velocidades de deformación a escala microscópica, y simular la propagación de la señal eléctrica en las neuritas bajo carga mecánica. Las simulaciones fueron calibradas con resultados experimentales publicados en la literatura, proporcionando, por tanto, un modelo capaz de predecir las alteraciones de las funciones electrofisiológicas neuronales bajo cargas externas dañinas, y uniendo lesiones mecánicas con las correspondientes deficiencias funcionales. Para abordar simulaciones a gran escala, aunque otras arquitecturas avanzadas basadas en muchos núcleos integrados (MICs) fueron consideradas, los solvers explícito e implícito se implementaron en unidades de procesamiento central (CPU) y unidades de procesamiento gráfico (GPUs). Estudios de escalabilidad fueron llevados acabo para ambas implementaciones mostrando resultados prometedores para casos de simulaciones extremadamente grandes con GPUs. Esta tesis abre la vía para futuros modelos mecánicos con el objetivo de unir las propiedades electrofisiológicas-químicas con las propiedades mecánicas. El objetivo general es mejorar el conocimiento de las comunidades médicas y de bioingeniería sobre la mecánica de las neuronas y las deficiencias funcionales que aparecen de los daños producidos por traumatismos mecánicos, como lesiones traumáticas en el cerebro, o enfermedades neurodegenerativas como la enfermedad del Alzheimer. ABSTRACT Sitting at the interface between Engineering, Computer Science and Biology, Computational Neuron Mechanics appears as a new interdisciplinary field potentially able to tackle clinical problems from a new perspective. This field is multiscale by nature, ranging from the nanoscale (e.g., tubulin dimers) to the macroscale (e.g., brain tissue), and aims at tackling problems that are complex, and sometime impossible, to study through experimental means. Computational modeling has been widely used in different Neuroscience applications as diverse as neuronal growth or compound action potential propagation. However, in the majority of the modeling approaches done in this field to date, the interactions between the cell and its surrounding media/stimulus have been rarely explored. Despite of the tremendous importance of such relationship in several medical challenges—e.g., traumatic brain injury (TBI), cancer, Alzheimer’s disease (AD)—a bridge between electrophysiological-chemical and mechanical properties of neurons from the molecular scale to the cell level is still lacking. To this end, this research proposes a multiscale computational framework particularized for two representative scenarios: axon growth and electrophysiological-mechanical coupling of neurites. In the former case, the relation between the molecular constituents of the axon during its growth and its resulting mechanical properties is explored, whereas in the latter, a mechanical stimulus provokes functional deficits at cell level as a consequence of its electrophysiological-chemical alterations. The computational modeling approach chosen in this work is the finite difference method (FDM), and was implemented in a new program called Neurite. Although the finite element method (FEM) is also explored as part of this research, the FDM provides the necessary flexibility and versatility to implement biological models, as well as the mathematical simplicity to extend them to large scale simulations with a low computational cost. Focusing first on the effect of electrophysiological-chemical properties on the mechanical proper ties, an adaptation of Neurite was developed to simulate microtubule polymerization in axonal growth and provide the axon mechanical properties as a function of microtubule occupancy. After calibrating the axon growth model against experimental results available in the literature, the mechanical characteristics can be tracked during the simulation. The axon mechanical properties show dramatic variations at the tip of the axon, where the growth cone supports the chemical and mechanical signaling. Based on the knowledge gained from the FDM scheme, and in order to go from 1D to 3D, this preliminary yet novel scheme paves the road for future studies with FEM. Focusing then on the effect of mechanical properties on the electrophysiological-chemical properties, Neurite was used to relate macroscopic mechanical loading to microscopic strains and strain rates, and simulate the electrical signal propagation along neurites under mechanical loading. The simulations were calibrated against experimental results published in the literature, thus providing a model able to predict the alteration of neuronal electrophysiological function under external damaging load, and linking mechanical injuries to subsequent acute functional deficits. To undertake large scale simulations, although other state-of-the-art architectures based on many integrated cores (MICs) were considered, the explicit and implicit solvers were implemented for central processing units (CPUs) and graphics processing units (GPUs). Scalability studies were done for both implementations showing promising results for extremely large scale simulations with GPUs. This thesis opens the avenue for future mechanical modeling approaches aimed at linking electrophysiological- chemical properties to mechanical properties. Its overarching goal is to enhance the bioengineering and medical communities knowledge on neuronal mechanics and functional deficits arising from damages produced by direct mechanical insults, such as TBI, or neurodegenerative evolving illness, such as AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este estudio se ha realizado el diseño de un receptor de una central de Torre Central de energía solar para generación directa de vapor, mediante el uso de métodos numéricos, con un perfil de potencia incidente variable longitudinal y transversalmente. Para ello se ha dividido la geometría del receptor según el método de diferencias finitas, y se ha procedido a resolver las ecuaciones del balance de energía. Una vez resuelto el sistema de ecuaciones se dispone de la distribución de temperaturas en el receptor y se puede proceder a analizar los resultados así como a calcular otros datos de interés. ABSTRACT In this study it has been made a Central Receiver Solar Thermal Power Plant’s Receiver design for direct steam production, by using numerical methods, with a variable longitudinally and transversely income solar power profile. With this propose, the receiver’s geometry has been divided using the finite difference method, and the energy balance equations have been solved. Once the equations system has been solved, the receiver´s temperature distribution is known, and you can analyze the results as well as calculate other interesting data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se ha utilizado un programa de modelización de ondas sísmicas por métodos finitos en dos dimensiones para analizar el efecto Source Ghost en profundidades de 4, 14, 24 y 34 metros. Este efecto se produce cuando se dispara una fuente enterrada y, debido al contacto suelo-aire, se genera una onda reflejada que, en cierto momento, se superpone con la onda principal, produciéndose una disminución de la amplitud de la onda (Source Ghost). Los resultados teóricos del efecto se han comparado con los resultados prácticos del programa de modelización concluyéndose que es posible determinar el rango de frecuencias afectado por el efecto. Sin embargo, la distancia entre receptor y fuente es una nueva variable que desplaza el efecto hacia frecuencias más altas impidiendo su predicción. La utilización de una técnica de procesamiento básica como la corrección del Normal Move-Out (NMO) en el apilado de las trazas, contrarresta la variable distancia receptor-fuente, y por tanto es posible calcular el rango de frecuencias del efecto Source Ghost. Abstract A seismic wave forward modeling in two dimensions using finite-difference method has been used for analyzing the Source Ghost effect at depths between 4-34 meters. A shot from a buried source generates a down going reflection due to the free surface boundary and, at some point, it interferes with the main wave propagation causing a reduction of wave amplitude at some frequency range (Source Ghost). Theoretical results and experimental results provided by the forward modeling are compared for concluding that the forward modeling is able to identify the frequency range affected by the source ghost. Nevertheless, it has been found that the receiver-source distance (offset) is a new variable that modifies the frequency range to make it unpredictable. A basic seismic processing technique, Normal Move-Out (NMO) correction, has been used for a single twenty fold CMP gather. The final stack shows that the processing technique neutralize the offset effect and therefore the forward modeling is still capable to determine the affected frequency range by the source ghost regardless the distance between receiver and source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una amarra electrodinámica (electrodynamic tether) opera sobre principios electromagnéticos intercambiando momento con la magnetosfera planetaria e interactuando con su ionosfera. Es un subsistema pasivo fiable para desorbitar etapas de cohetes agotadas y satélites al final de su misión, mitigando el crecimiento de la basura espacial. Una amarra sin aislamiento captura electrones del plasma ambiente a lo largo de su segmento polarizado positivamente, el cual puede alcanzar varios kilómetros de longitud, mientras que emite electrones de vuelta al plasma mediante un contactor de plasma activo de baja impedancia en su extremo catódico, tal como un cátodo hueco (hollow cathode). En ausencia de un contactor catódico activo, la corriente que circula por una amarra desnuda en órbita es nula en ambos extremos de la amarra y se dice que ésta está flotando eléctricamente. Para emisión termoiónica despreciable y captura de corriente en condiciones limitadas por movimiento orbital (orbital-motion-limited, OML), el cociente entre las longitudes de los segmentos anódico y catódico es muy pequeño debido a la disparidad de masas entre iones y electrones. Tal modo de operación resulta en una corriente media y fuerza de Lorentz bajas en la amarra, la cual es poco eficiente como dispositivo para desorbitar. El electride C12A7 : e−, que podría presentar una función de trabajo (work function) tan baja como W = 0.6 eV y un comportamiento estable a temperaturas relativamente altas, ha sido propuesto como recubrimiento para amarras desnudas. La emisión termoiónica a lo largo de un segmento así recubierto y bajo el calentamiento de la operación espacial, puede ser más eficiente que la captura iónica. En el modo más simple de fuerza de frenado, podría eliminar la necesidad de un contactor catódico activo y su correspondientes requisitos de alimentación de gas y subsistema de potencia, lo que resultaría en un sistema real de amarra “sin combustible”. Con este recubrimiento de bajo W, cada segmento elemental del segmento catódico de una amarra desnuda de kilómetros de longitud emitiría corriente como si fuese parte de una sonda cilíndrica, caliente y uniformemente polarizada al potencial local de la amarra. La operación es similar a la de una sonda de Langmuir 2D tanto en los segmentos catódico como anódico. Sin embargo, en presencia de emisión, los electrones emitidos resultan en carga espacial (space charge) negativa, la cual reduce el campo eléctrico que los acelera hacia fuera, o incluso puede desacelerarlos y hacerlos volver a la sonda. Se forma una doble vainas (double sheath) estable con electrones emitidos desde la sonda e iones provenientes del plasma ambiente. La densidad de corriente termoiónica, variando a lo largo del segmento catódico, podría seguir dos leyes distintas bajo diferentes condiciones: (i) la ley de corriente limitada por la carga espacial (space-charge-limited, SCL) o (ii) la ley de Richardson-Dushman (RDS). Se presenta un estudio preliminar sobre la corriente SCL frente a una sonda emisora usando la teoría de vainas (sheath) formada por la captura iónica en condiciones OML, y la corriente electrónica SCL entre los electrodos cilíndricos según Langmuir. El modelo, que incluye efectos óhmicos y el efecto de transición de emisión SCL a emisión RDS, proporciona los perfiles de corriente y potencial a lo largo de la longitud completa de la amarra. El análisis muestra que en el modo más simple de fuerza de frenado, bajo condiciones orbitales y de amarras típicas, la emisión termoiónica proporciona un contacto catódico eficiente y resulta en una sección catódica pequeña. En el análisis anterior, tanto la transición de emisión SCL a RD como la propia ley de emisión SCL consiste en un modelo muy simplificado. Por ello, a continuación se ha estudiado con detalle la solución de vaina estacionaria de una sonda con emisión termoiónica polarizada negativamente respecto a un plasma isotrópico, no colisional y sin campo magnético. La existencia de posibles partículas atrapadas ha sido ignorada y el estudio incluye tanto un estudio semi-analítico mediante técnica asintóticas como soluciones numéricas completas del problema. Bajo las tres condiciones (i) alto potencial, (ii) R = Rmax para la validez de la captura iónica OML, y (iii) potencial monotónico, se desarrolla un análisis asintótico auto-consistente para la estructura de plasma compleja que contiene las tres especies de cargas (electrones e iones del plasma, electrones emitidos), y cuatro regiones espaciales distintas, utilizando teorías de movimiento orbital y modelos cinéticos de las especies. Aunque los electrones emitidos presentan carga espacial despreciable muy lejos de la sonda, su efecto no se puede despreciar en el análisis global de la estructura de la vaina y de dos capas finas entre la vaina y la región cuasi-neutra. El análisis proporciona las condiciones paramétricas para que la corriente sea SCL. También muestra que la emisión termoiónica aumenta el radio máximo de la sonda para operar dentro del régimen OML y que la emisión de electrones es mucho más eficiente que la captura iónica para el segmento catódico de la amarra. En el código numérico, los movimientos orbitales de las tres especies son modelados para potenciales tanto monotónico como no-monotónico, y sonda de radio R arbitrario (dentro o más allá del régimen de OML para la captura iónica). Aprovechando la existencia de dos invariante, el sistema de ecuaciones Poisson-Vlasov se escribe como una ecuación integro-diferencial, la cual se discretiza mediante un método de diferencias finitas. El sistema de ecuaciones algebraicas no lineal resultante se ha resuelto de con un método Newton-Raphson paralelizado. Los resultados, comparados satisfactoriamente con el análisis analítico, proporcionan la emisión de corriente y la estructura del plasma y del potencial electrostático. ABSTRACT An electrodynamic tether operates on electromagnetic principles and exchanges momentum through the planetary magnetosphere, by continuously interacting with the ionosphere. It is a reliable passive subsystem to deorbit spent rocket stages and satellites at its end of mission, mitigating the growth of orbital debris. A tether left bare of insulation collects electrons by its own uninsulated and positively biased segment with kilometer range, while electrons are emitted by a low-impedance active device at the cathodic end, such as a hollow cathode, to emit the full electron current. In the absence of an active cathodic device, the current flowing along an orbiting bare tether vanishes at both ends and the tether is said to be electrically floating. For negligible thermionic emission and orbital-motion-limited (OML) collection throughout the entire tether (electron/ion collection at anodic/cathodic segment, respectively), the anodic-to-cathodic length ratio is very small due to ions being much heavier, which results in low average current and Lorentz drag. The electride C12A7 : e−, which might present a possible work function as low as W = 0.6 eV and moderately high temperature stability, has been proposed as coating for floating bare tethers. Thermionic emission along a thus coated cathodic segment, under heating in space operation, can be more efficient than ion collection and, in the simplest drag mode, may eliminate the need for an active cathodic device and its corresponding gas-feed requirements and power subsystem, which would result in a truly “propellant-less” tether system. With this low-W coating, each elemental segment on the cathodic segment of a kilometers-long floating bare-tether would emit current as if it were part of a hot cylindrical probe uniformly polarized at the local tether bias, under 2D probe conditions that are also applied to the anodic-segment analysis. In the presence of emission, emitted electrons result in negative space charge, which decreases the electric field that accelerates them outwards, or even reverses it, decelerating electrons near the emitting probe. A double sheath would be established with electrons being emitted from the probe and ions coming from the ambient plasma. The thermionic current density, varying along the cathodic segment, might follow two distinct laws under different con ditions: i) space-charge-limited (SCL) emission or ii) full Richardson-Dushman (RDS) emission. A preliminary study on the SCL current in front of an emissive probe is presented using the orbital-motion-limited (OML) ion-collection sheath and Langmuir’s SCL electron current between cylindrical electrodes. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects considered and the transition from SCL to full RDS emission is included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission provides efficient cathodic contact and leads to a short cathodic section. In the previous analysis, both the transition between SCL and RDS emission and the current law for SCL condition have used a very simple model. To continue, considering an isotropic, unmagnetized, colissionless plasma and a stationary sheath, the probe-plasma contact is studied in detail for a negatively biased probe with thermionic emission. The possible trapped particles are ignored and this study includes both semianalytical solutions using asymptotic analysis and complete numerical solutions. Under conditions of i) high bias, ii) R = Rmax for ion OML collection validity, and iii) monotonic potential, a self-consistent asymptotic analysis is carried out for the complex plasma structure involving all three charge species (plasma electrons and ions, and emitted electrons) and four distinct spatial regions using orbital motion theories and kinetic modeling of the species. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between the sheath and the quasineutral region. The parametric conditions for the current to be space-chargelimited are obtained. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers. In the numerical code, the orbital motions of all three species are modeled for both monotonic and non-monotonic potential, and for any probe radius R (within or beyond OML regime for ion collection). Taking advantage of two constants of motion (energy and angular momentum), the Poisson-Vlasov equation is described by an integro differential equation, which is discretized using finite difference method. The non-linear algebraic equations are solved using a parallel implementation of the Newton-Raphson method. The results, which show good agreement with the analytical results, provide the results for thermionic current, the sheath structure, and the electrostatic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo de esta tesis doctoral es la investigación del nuevo concepto de pinzas fotovoltaicas, es decir, del atrapamiento, ordenación y manipulación de partículas en las estructuras generadas en la superficie de materiales ferroeléctricos mediante campos fotovoltaicos o sus gradientes. Las pinzas fotovoltaicas son una herramienta prometedora para atrapar y mover las partículas en la superficie de un material fotovoltaico de una manera controlada. Para aprovechar esta nueva técnica es necesario conocer con precisión el campo eléctrico creado por una iluminación específica en la superficie del cristal y por encima de ella. Este objetivo se ha dividido en una serie de etapas que se describen a continuación. La primera etapa consistió en la modelización del campo fotovoltaico generado por iluminación no homogénea en substratos y guías de onda de acuerdo al modelo de un centro. En la segunda etapa se estudiaron los campos y fuerzas electroforéticas y dielectroforéticas que aparecen sobre la superficie de substratos iluminados inhomogéneamente. En la tercera etapa se estudiaron sus efectos sobre micropartículas y nanopartículas, en particular se estudió el atrapamiento superficial determinando las condiciones que permiten el aprovechamiento como pinzas fotovoltaicas. En la cuarta y última etapa se estudiaron las configuraciones más eficientes en cuanto a resolución espacial. Se trabajó con distintos patrones de iluminación inhomogénea, proponiéndose patrones de iluminación al equipo experimental. Para alcanzar estos objetivos se han desarrollado herramientas de cálculo con las cuales obtenemos temporalmente todas las magnitudes que intervienen en el problema. Con estas herramientas podemos abstraernos de los complicados mecanismos de atrapamiento y a partir de un patrón de luz obtener el atrapamiento. Todo el trabajo realizado se ha llevado a cabo en dos configuraciones del cristal, en corte X ( superficie de atrapamiento paralela al eje óptico) y corte Z ( superficie de atrapamiento perpendicular al eje óptico). Se ha profundizado en la interpretación de las diferencias en los resultados según la configuración del cristal. Todas las simulaciones y experimentos se han realizado utilizando como soporte un mismo material, el niobato de litio, LiNbO3, con el f n de facilitar la comparación de los resultados. Este hecho no ha supuesto una limitación en los resultados pues los modelos no se limitan a este material. Con respecto a la estructura del trabajo, este se divide en tres partes diferenciadas que son: la introducción (I), la modelización del atrapamiento electroforético y dielectroforético (II) y las simulaciones numéricas y comparación con experimentos (III). En la primera parte se fijan las bases sobre las que se sustentarán el resto de las partes. Se describen los efectos electromagnéticos y ópticos a los que se hará referencia en el resto de los capítulos, ya sea por ser necesarios para describir los experimentos o, en otros casos, para dejar constancia de la no aparición de estos efectos para el caso en que nos ocupa y justificar la simplificación que en muchos casos se hace del problema. En esta parte, se describe principalmente el atrapamiento electroforético y dielectroforético, el efecto fotovoltaico y las propiedades del niobato de litio por ser el material que utilizaremos en experimentos y simulaciones. Así mismo, como no debe faltar en ninguna investigación, se ha analizado el state of the art, revisando lo que otros científicos del campo en el que estamos trabajando han realizado y escrito con el fin de que nos sirva de cimiento a la investigación. Con el capítulo 3 finalizamos esta primera parte describiendo las técnicas experimentales que hoy en día se están utilizando en los laboratorios para realizar el atrapamiento de partículas mediante el efecto fotovoltaico, ya que obtendremos ligeras diferencias en los resultados según la técnica de atrapamiento que se utilice. En la parte I I , dedicada a la modelización del atrapamiento, empezaremos con el capítulo 4 donde modelizaremos el campo eléctrico interno de la muestra, para a continuación modelizar el campo eléctrico, los potenciales y las fuerzas externas a la muestra. En capítulo 5 presentaremos un modelo sencillo para comprender el problema que nos aborda, al que llamamos Modelo Estacionario de Separación de Carga. Este modelo da muy buenos resultados a pesar de su sencillez. Pasamos al capítulo 6 donde discretizaremos las ecuaciones que intervienen en la física interna de la muestra mediante el método de las diferencias finitas, desarrollando el Modelo de Distribución de Carga Espacial. Para terminar esta parte, en el capítulo 8 abordamos la programación de las modelizaciones presentadas en los anteriores capítulos con el fn de dotarnos de herramientas para realizar las simulaciones de una manera rápida. En la última parte, III, presentaremos los resultados de las simulaciones numéricas realizadas con las herramientas desarrolladas y comparemos sus resultados con los experimentales. Fácilmente podremos comparar los resultados en las dos configuraciones del cristal, en corte X y corte Z. Finalizaremos con un último capítulo dedicado a las conclusiones, donde resumiremos los resultados que se han ido obteniendo en cada apartado desarrollado y daremos una visión conjunta de la investigación realizada. ABSTRACT The aim of this thesis is the research of the new concept of photovoltaic or optoelectronic tweezers, i.e., trapping, management and manipulation of particles in structures generated by photovoltaic felds or gradients on the surface of ferroelectric materials. Photovoltaic tweezers are a promising tool to trap and move the particles on the surface of a photovoltaic material in a monitored way. To take advantage of this new technique is necessary to know accurately the electric field created by a specifc illumination in the crystal surface and above it. For this purpose, the work was divided into the stages described below. The first stage consisted of modeling the photovoltaic field generated by inhomogeneous illumination in substrates and waveguides according to the one-center model. In the second stage, electrophoretic and dielectrophoretic fields and forces appearing on the surface of substrates and waveguides illuminated inhomogeneously were studied. In the third stage, the study of its effects on microparticles and nanoparticles took place. In particular, the trapping surface was studied identifying the conditions that allow its use as photovoltaic tweezers. In the fourth and fnal stage the most efficient configurations in terms of spatial resolution were studied. Different patterns of inhomogeneous illumination were tested, proposing lightning patterns to the laboratory team. To achieve these objectives calculation tools were developed to get all magnitudes temporarily involved in the problem . With these tools, the complex mechanisms of trapping can be simplified, obtaining the trapping pattern from a light pattern. All research was carried out in two configurations of crystal; in X section (trapping surface parallel to the optical axis) and Z section (trapping surface perpendicular to the optical axis). The differences in the results depending on the configuration of the crystal were deeply studied. All simulations and experiments were made using the same material as support, lithium niobate, LiNbO3, to facilitate the comparison of results. This fact does not mean a limitation in the results since the models are not limited to this material. Regarding the structure of this work, it is divided into three clearly differentiated sections, namely: Introduction (I), Electrophoretic and Dielectrophoretic Capture Modeling (II) and Numerical Simulations and Comparison Experiments (III). The frst section sets the foundations on which the rest of the sections will be based on. Electromagnetic and optical effects that will be referred in the remaining chapters are described, either as being necessary to explain experiments or, in other cases, to note the non-appearance of these effects for the present case and justify the simplification of the problem that is made in many cases. This section mainly describes the electrophoretic and dielectrophoretic trapping, the photovoltaic effect and the properties of lithium niobate as the material to use in experiments and simulations. Likewise, as required in this kind of researches, the state of the art have been analyzed, reviewing what other scientists working in this field have made and written so that serve as a foundation for research. With chapter 3 the first section finalizes describing the experimental techniques that are currently being used in laboratories for trapping particles by the photovoltaic effect, because according to the trapping technique in use we will get slightly different results. The section I I , which is dedicated to the trapping modeling, begins with Chapter 4 where the internal electric field of the sample is modeled, to continue modeling the electric field, potential and forces that are external to the sample. Chapter 5 presents a simple model to understand the problem addressed by us, which is called Steady-State Charge Separation Model. This model gives very good results despite its simplicity. In chapter 6 the equations involved in the internal physics of the sample are discretized by the finite difference method, which is developed in the Spatial Charge Distribution Model. To end this section, chapter 8 is dedicated to program the models presented in the previous chapters in order to provide us with tools to perform simulations in a fast way. In the last section, III, the results of numerical simulations with the developed tools are presented and compared with the experimental results. We can easily compare outcomes in the two configurations of the crystal, in section X and section Z. The final chapter collects the conclusions, summarizing the results that were obtained in previous sections and giving an overview of the research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esse trabalho constitui o desenvolvimento da modelagem térmica e simulação por métodos numéricos de dois componentes fundamentais do ciclo de refrigeração por absorção de calor com o par amônia/água: o absorvedor e o gerador. A função do absorvedor é produzir mistura líquida com alta fração mássica de amônia a partir de mistura líquida com baixa fração mássica de amônia e mistura vapor mediante retirada de calor. A função do gerador é produzir mistura líquido/vapor a partir de mistura líquida mediante o fornecimento de calor. É proposto o uso da tecnologia de filmes descendentes sobre placas inclinadas e o método de diferenças finitas para dividir o comprimento da placa em volumes de controle discretos e realizar os balanços de massa, espécie de amônia e energia juntamente com as equações de transferência de calor e massa para o filme descendente. O objetivo desse trabalho é obter um modelo matemático simplificado para ser utilizado em controle e otimização. Esse modelo foi utilizado para calcular as trocas de calor e massa no absorvedor e gerador para diversas condições a partir de dados operacionais, tais como: dimensões desses componentes, ângulo de inclinação da placa, temperatura de superfície e condições de entrada da fase líquida e vapor. Esses resultados foram utilizados para estabelecer relações de causa e efeito entre as variáveis e parâmetros do problema. Os resultados mostraram que o ângulo de inclinação da placa ótimo tanto para o absorvedor como para o gerador é a posição vertical, ou 90°. A posição vertical proporciona o menor comprimento de equilíbrio (0,85 m para o absorvedor e 1,27 m para o gerador com as condições testadas) e se mostrou estável, pois até 75° não foram verificadas variações no funcionamento do absorvedor e gerador. Dentre as condições testadas para uma placa de 0,5 m verificou-se que as maiores efetividades térmicas no absorvedor e gerador foram respectivamente 0,9 e 0,7 e as maiores efetividades mássicas no absorvedor e gerador foram respectivamente 0,6 e 0,5. É esperado que os dados obtidos sejam utilizados em trabalhos futuros para a construção de um protótipo laboratorial e na validação do modelo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta uma discussão sobre o estudo dos efeitos térmicos e elásticos decorrentes da pressão de sustentação presentes nos mancais. Para tanto, propõe-se um modelo matemático baseado nas equações para mancais curtos considerando a região de cavitação e utilizando o princípio da continuidade de massa. Com isto, deduzem-se as equações para o mancal a partir das equações de Reynolds e da energia, aplicando uma solução modificada para a solução de Ocvirk, sendo as equações resolvidas numericamente pelo Método das Diferenças Finitas. Somado o tratamento de mecânica dos fluidos, o trabalho discute dois modelos térmicos de previsão de temperatura média do fluido e sua influência no campo de pressão, apresentando gráficos representativos do campo de pressão e de temperatura, assim como as diferenças e implicações das diferenças. Para o cálculo de deformação da estrutura, utiliza-se um Modelo de Elementos Finitos para uma dada geometria, fazendo-se uma avaliação da variação do campo de pressão e o quanto essa diferença afeta as demais propriedades do fluido. Por fim, com o modelo completo, calcula-se o quanto esse modelamento para mancais curtos se aproxima de soluções para mancais finitos, com base em resultados da literatura, chegando a desvios quase oito vezes menores que os previstos pela literatura. Além disso, pode-se estabelecer a abrangência do modelo, ou seja, prever as condições em que suas propriedades são válidas e podem ser utilizadas para estudos iniciais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical solution of the time dependent wave equation in an unbounded domain generally leads to a truncation of this domain, which requires the introduction of an artificial boundary with associated boundary conditions. Such nonreflecting conditions ensure the equivalence between the solution of the original problem in the unbounded region and the solution inside the artificial boundary. We consider the acoustic wave equation and derive exact transparent boundary conditions that are local in time and can be directly used in explicit methods. These conditions annihilate wave harmonics up to a given order on a spherical artificial boundary, and we show how to combine the derived boundary condition with a finite difference method. The analysis is complemented by a numerical example in two spatial dimensions that illustrates the usefulness and accuracy of transparent boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite difference method for simulating voltammograms of electrochemically driven enzyme catalysis is presented. The method enables any enzyme mechanism to be simulated. The finite difference equations can be represented as a matrix equation containing a nonlinear sparse matrix. This equation has been solved using the software package Mathematica. Our focus is on the use of cyclic voltammetry since this is the most commonly employed electrochemical method used to elucidate mechanisms. The use of cyclic voltammetry to obtain data from systems obeying Michaelis-Menten kinetics is discussed, and we then verify our observations on the Michaelis-Menten system using the finite difference simulation. Finally, we demonstrate how the method can be used to obtain mechanistic information on a real redox enzyme system, the complex bacterial molybdoenzyme xanthine dehydrogenase.