996 resultados para Financial Flows
Resumo:
Financial time series have a complex dynamic nature. Many techniques were adopted having in mind standard paradigms of time flow. This paper explores an alternative route involving relativistic effects. It is observed that the measuring perspective influences the results and that we can have different time textures.
Resumo:
This paper presents a novel method for the analysis of nonlinear financial and economic systems. The modeling approach integrates the classical concepts of state space representation and time series regression. The analytical and numerical scheme leads to a parameter space representation that constitutes a valid alternative to represent the dynamical behavior. The results reveal that business cycles can be clearly revealed, while the noise effects common in financial indices can elegantly be filtered out of the results.
Resumo:
The goal of this study is to analyze the dynamical properties of financial data series from nineteen worldwide stock market indices (SMI) during the period 1995–2009. SMI reveal a complex behavior that can be explored since it is available a considerable volume of data. In this paper is applied the window Fourier transform and methods of fractional calculus. The results reveal classification patterns typical of fractional order systems.
Resumo:
Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.
Resumo:
The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from 32 worldwide stock market indices during the period 2000–2009 at a daily time horizon. Stock market indices are examples of complex interacting systems for which a huge amount of data exists. The methods and algorithms that have been explored for the description of physical phenomena become an effective background in the analysis of economical data. In this perspective are applied the classical concepts of signal analysis, Fourier transform and methods of fractional calculus. The results reveal classification patterns typical of fractional dynamical systems.
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.
Resumo:
The activity of growing living bacteria was investigated using real-time and in situ rheology-in stationary and oscillatory shear. Two different strains of the human pathogen Staphylococcus aureus-strain COL and its isogenic cell wall autolysis mutant, RUSAL9-were considered in this work. For low bacteria density, strain COL forms small clusters, while the mutant, presenting deficient cell separation, forms irregular larger aggregates. In the early stages of growth, when subjected to a stationary shear, the viscosity of the cultures of both strains increases with the population of cells. As the bacteria reach the exponential phase of growth, the viscosity of the cultures of the two strains follows different and rich behaviors, with no counterpart in the optical density or in the population's colony-forming units measurements. While the viscosity of strain COL culture keeps increasing during the exponential phase and returns close to its initial value for the late phase of growth, where the population stabilizes, the viscosity of the mutant strain culture decreases steeply, still in the exponential phase, remains constant for some time, and increases again, reaching a constant plateau at a maximum value for the late phase of growth. These complex viscoelastic behaviors, which were observed to be shear-stress-dependent, are a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. The viscous and elastic moduli of strain COL culture, obtained with oscillatory shear, exhibit power-law behaviors whose exponents are dependent on the bacteria growth stage. The viscous and elastic moduli of the mutant culture have complex behaviors, emerging from the different relaxation times that are associated with the large molecules of the medium and the self-organized structures of bacteria. Nevertheless, these behaviors reflect the bacteria growth stage.
Resumo:
The objective of this article is to provide additional knowledge to the discussion of long-term memory, leaning over the behavior of the main Portuguese stock index. The first four moments are calculated using time windows of increasing size and sliding time windows of fixed size equal to 50 days and suggest that daily returns are non-ergodic and non-stationary. Seeming that the series is best described by a fractional Brownian motion approach, we use the rescaled-range analysis (R/S) and the detrended fluctuation analysis (DFA). The findings indicate evidence of long term memory in the form of persistence. This evidence of fractal structure suggests that the market is subject to greater predictability and contradicts the efficient market hypothesis in its weak form. This raises issues regarding theoretical modeling of asset pricing. In addition, we carried out a more localized (in time) study to identify the evolution of the degree of long-term dependency over time using windows 200-days and 400-days. The results show a switching feature in the index, from persistent to anti-persistent, quite evident from 2010.
Resumo:
This article aims to contribute to the discussion of long-term dependence, focusing on the behavior of the main Belgian stock index. Non-parametric analyzes of the general characteristics of temporal frequency show that daily returns are non-ergodic and non-stationary. Therefore, we use the rescaled-range analysis (R/S) and the detrended fluctuation analysis (DFA), under the fractional Brownian motion approach, and we found slight evidence of long-term dependence. These results refute the random walk hypothesis with i.i.d. increments, which is the basis of the EMH in its weak form, and call into question some theoretical modeling of asset pricing. Other more localized complementary study, to identify the evolution of the degree of dependence over time windows, showed that the index has become less persistent from 2010. This may mean a maturing market by the extension of the effects of current financial crisis.
Resumo:
The main purpose of this work was the development of procedures for the simulation of atmospheric ows over complex terrain, using OpenFOAM. For this aim, tools and procedures were developed apart from this code for the preprocessing and data extraction, which were thereafter applied in the simulation of a real case. For the generation of the computational domain, a systematic method able to translate the terrain elevation model to a native OpenFOAM format (blockMeshDict) was developed. The outcome was a structured mesh, in which the user has the ability to de ne the number of control volumes and its dimensions. With this procedure, the di culties of case set up and the high computation computational e ort reported in literature associated to the use of snappyHexMesh, the OpenFOAM resource explored until then for the accomplishment of this task, were considered to be overwhelmed. Developed procedures for the generation of boundary conditions allowed for the automatic creation of idealized inlet vertical pro les, de nition of wall functions boundary conditions and the calculation of internal eld rst guesses for the iterative solution process, having as input experimental data supplied by the user. The applicability of the generated boundary conditions was limited to the simulation of turbulent, steady-state, incompressible and neutrally strati ed atmospheric ows, always recurring to RaNS (Reynolds-averaged Navier-Stokes) models. For the modelling of terrain roughness, the developed procedure allowed to the user the de nition of idealized conditions, like an uniform aerodynamic roughness length or making its value variable as a function of topography characteristic values, or the using of real site data, and it was complemented by the development of techniques for the visual inspection of generated roughness maps. The absence and the non inclusion of a forest canopy model limited the applicability of this procedure to low aerodynamic roughness lengths. The developed tools and procedures were then applied in the simulation of a neutrally strati ed atmospheric ow over the Askervein hill. In the performed simulations was evaluated the solution sensibility to di erent convection schemes, mesh dimensions, ground roughness and formulations of the k - ε and k - ω models. When compared to experimental data, calculated values showed a good agreement of speed-up in hill top and lee side, with a relative error of less than 10% at a height of 10 m above ground level. Turbulent kinetic energy was considered to be well simulated in the hill windward and hill top, and grossly predicted in the lee side, where a zone of ow separation was also identi ed. Despite the need of more work to evaluate the importance of the downstream recirculation zone in the quality of gathered results, the agreement between the calculated and experimental values and the OpenFOAM sensibility to the tested parameters were considered to be generally in line with the simulations presented in the reviewed bibliographic sources.
Resumo:
Nesta tese estudamos os efeitos de contágio financeiro e de memória longa causados pelas crises financeiras de 2008 e 2010 em alguns mercados acionistas internacionais. A tese é composta por três ensaios interligados. No Ensaio 1, recorremos à teoria das cópulas para testar a existência de contágio e revelar os canais “investor induced” de transmissão da crise de 2008 aos mercados da Bélgica, França, Holanda e Portugal (grupo NYSE Euronext). Concluímos que existe contágio nestes mercados, que o canal “portfolio rebalancing” é o mecanismo mais importante de transmissão da crise, e que o fenómeno “flight to quality” está presente nos mercados. No Ensaio 2, usando novamente modelos de cópulas, avaliamos os efeitos de contágio provocados pelo mercado acionista grego nos mercados do grupo NYSE Euronext, no contexto da crise de 2010. Os resultados obtidos sugerem que durante a crise de 2010 apenas o mercado português foi objeto de contágio; além disso, conclui-se que os efeitos de contágio provocados pela crise de 2008 são claramente superiores aos efeitos provocados pela crise de 2010. No Ensaio 3, abordamos o tema da memória longa através do estudo do expoente de Hurst dos mercados acionistas da Bélgica, E.U.A., França, Grécia, Holanda, Japão, Reino Unido e Portugal. Verificamos que as propriedades de memória longa dos mercados foram afetadas pelas crises, especialmente a de 2008 – que aumentou a memória longa dos mercados e tornou-os mais persistentes. Finalmente, usando cópulas mais uma vez, verificamos que as crises provocaram, em geral, um aumento na correlação entre os expoentes de Hurst locais dos mercados foco das crises (E.U.A. e Grécia) e os expoentes de Hurst locais dos outros mercados da amostra, sugerindo que o expoente de Hurst pode ser utilizado para detetar efeitos de contágio financeiro. Em síntese, os resultados desta tese sugerem que comparativamente com períodos de acalmia, os períodos de crises financeiras tendem a provocar ineficiência nos mercados acionistas e a conduzi-los na direção da persistência e do contágio financeiro.
Resumo:
Prepared for presentation at the Portuguese Finance Network International Conference 2014, Vilamoura, Portugal, June 18-20
Resumo:
"The purpose of the XII Iberian-Italian Congress of Financial and Actuarial Mathematics is to provide a meeting point for researchers in Financial Economics from different countries and research backgrounds in universities, government or financial institutions. In fact, the Congress which is currently taking place in Lisbon has been organized to encourage communication and debate among the participants as well as to reinforce the bonds between us.The current edition of the Congress is characterized by the quality and diversity of the papers that have been submitted with special attention to the International Financial Crisis and measures of risk in different financial markets. However, as the Congress Program indicates, there are also parallel sessions about traditional topics in finance such as asset pricing, insurance, corporate finance, etc.Although this Congress has always been organized alternately between Spain and Italy, this year we have the great pleasure of celebrating it in Portugal which will be included as a permanent partner." [prefácio]
Resumo:
Reliable flow simulation software is inevitable to determine an optimal injection strategy in Liquid Composite Molding processes. Several methodologies can be implemented into standard software in order to reduce CPU time. Post-processing techniques might be one of them. Post-processing a finite element solution is a well-known procedure, which consists in a recalculation of the originally obtained quantities such that the rate of convergence increases without the need for expensive remeshing techniques. Post-processing is especially effective in problems where better accuracy is required for derivatives of nodal variables in regions where Dirichlet essential boundary condition is imposed strongly. In previous works influence of smoothness of non-homogeneous Dirichlet condition, imposed on smooth front was examined. However, usually quite a non-smooth boundary is obtained at each time step of the infiltration process due to discretization. Then direct application of post-processing techniques does not improve final results as expected. The new contribution of this paper lies in improvement of the standard methodology. Improved results clearly show that the recalculated flow front is closer to the ”exact” one, is smoother that the previous one and it improves local disturbances of the “exact” solution.