853 resultados para Filtres rehausseurs de contours
Resumo:
River training walls have been built at scores of locations along the NSW coast and their impacts on shoreline change are still not fully understood. In this study, the Brunswick River entrance and adjacent beaches are selected for examination of the impact of the construction of major training walls. Thirteen sets of aerial photographs taken between 1947 and 1994 are used in a CIS approach to accurately determine tire shoreline Position, beach contours and sand volumes, and their changes in both time and space, and then to assess the contribution of both tire structures and natural hydrodynamic conditions to large scale (years-decades and kilometres) beach changes. The impact of the training walls can be divided into four stages: natural conditions prior to their construction (pre 1959), major downdrift erosion and updrift accretion during and. following the construction of the walls in 1959 similar to 1962 and 1966. diminishing impact of the walls between 1966 and 1987, and finally no apparent impact between 1987 similar to 1994. The impact extends horizontally about 8 km updrift and 17 km downdrift, and temporally up to 25 years..
Resumo:
针对室内场景双目立体匹配有别于一般场景立体匹配的特殊性,提出了一种计算简便、准确度高的立体图像匹配算法。该算法首先利用canny算子检测物体的边缘,根据边缘的线性不变矩寻找出目标物体,然后提取出目标物体轮廓的特征点,利用角度直方图计算出左右图像的旋转角度,最后利用角度向量实现左右图像的对应像素点的匹配。线性不变矩有效地将计算复杂度由二维降低到一维,大大降低了计算量。角度向量的提出降低了特征点匹配的复杂度,而且计算简便,准确率高。实验表明,该算法对图像的缩放、旋转、平移均免疫,具有较高的识别精度和良好的抗干扰性,计算效率高于传统方法,有着较高的应用价值。
Resumo:
具有全局平移优先属性的主动轮廓更适于目标跟踪。演化轮廓具有的全局平移优先性可以理解为沿轮廓的速度场具有相等的倾向。根据此思想,通过定义在曲线扰动集合上的新内积空间导出了一种简单,具有平移优先的梯度流。新的内积空间由于是通过向H0主动轮廓对应的內积空间引入曲线扰动的方差获得,所以此主动轮廓称为方差主动轮廓。方差主动轮廓是将H0主动轮廓与其对应的平均梯度流通过加权求和获得,而H1主动轮廓则是通过H0主动轮廓与特定类型的核函数进行卷积得到。因此方差主动轮廓实现时更简单和快速。最后给出了H0,H1和方差主动轮廓在频域与时域的分析。
Resumo:
图像分割是图像处理中很重要的一个问题,是计算机视觉的基础。因为它能够简化信息的存储和表示,从而能够对获取的图像内容进行智能解释,所以在很多应用问题中,图像分割是必不可少的过程,如医学图像处理,环境三维重建及自动目标识别等。图像分割的方法有很多种,如边缘检测,阈值,区域融合,分水岭及马尔可夫随机场等。虽然这些方法有其各自特点,但是它们在图象分割过程中不能充分将图像底层信息与高层信息结合,从而无法模拟人类视觉系统智能性。当图像底层信息不足时,这些仅基于数据驱动的分割模型无法达到令人满意的结果。尽管某种具体图像分割方法不可能满足所有图像分割要求,但利用尽可能多的高层与底层信息,将图像分割成有意义和人们所期望的区域始终是研究者所追求的目标。图像分割问题的数学建模和计算中有两个关键因素。第一是建立合适的分割模型将分割边界和分割区域的作用有效结合。第二是利用最有效的方法将分割边界和分割区域的几何特征统一到分割模型中。基于变分原理的主动轮廓图像分割将图像视为连续函数。这就使得研究者可以从连续函数空间角度来研究图像分割问题。这同时也为研究者提供严格的数学工具,如微分几何、泛函分析和微分方程等。为此它能很好的解决上述两个问题。第一,Mumford-Shah(M-S)模型为基于变分的主动轮廓分割模型提供了一完整的数学理论框架,并且Mumford-Shah模型从信息论的角度也能得到合理解释。第二,水平集方法能有效的表示分割边界和分割区域的几何特征。与其它方法相比,变分主动轮廓在理论和实际计算过程中都具有显著的优势。首先它能直接处理和表示各种重要的几何特征,如梯度、切向量、曲率等,并且能有效模拟很多动态过程,如线性和非线性扩散等。再则其可以利用很多已有的丰富数值方法进行分析和计算。本文基于变分原理与偏微分方程方法,利用主动轮廓模型具有结合底层图像信息与高层先验知识的特点,将特定先验知识与主动轮廓分割模型进行有效结合以弥补底层图像信息的不足,从而使主动轮分割廓模型具有更强的智能性。本文主要从两点对变分主动轮廓分割模型展开了研究:1、演化轮廓的形状约束;2、演化轮廓的梯度下降流约束及其滤波实现。其主要工作包括以下四个方面的内容:第一,基于M-S模型和样条曲线的开边界检测。本章通过对演化轮廓引入合理边界条件,利用样条曲线表示待检测的开曲线,将一般开曲线的检测问题变为合理的图像分割问题,从而达到一般开曲线检测目的。此方法称为开扩散蛇模型。一般开曲线的检测具有很多应用领域,如:河流、道路、天际线、焊缝等检测。第二,方差主动轮廓模型。在目标跟踪应用中,跟踪目标的主要运动形式表现为平移。本章将此作为一种先验知识与主动轮廓模型结合,提出了一种方差主动轮廓模型(HV)。此模型的特点是轮廓在演化过程中具有平移优先和快速的良好特性。它比已有的主动轮廓模型更适于自动目标跟踪领域。第三,基于M-S模型和隐式曲面变分方法的一般梯度下降流滤波器。本章为一般梯度下降流求取提供了统一框架及解决方法。首先本章将H0梯度下降流和一般梯度下降流统一到Mumford-Shah模型框架中,从而将一般梯度下降流的求取转换为一个极小化泛函问题,并利用隐式曲面变分方法对此极小化泛函进行求解。另外本章从滤波器设计角度出发,通过对H0梯度下降流滤波可以得到一般梯度下降流。滤波器的实现体现了内嵌于一般梯度下降流的先验属性。根据此思想,本章将对应于HV和H1主动轮廓的內积空间顺序组合,对H0梯度下降流进行顺序滤波,提出了一种既具有全局平移优先性又具有局部光滑速度场的主动轮廓,称为HV1主动轮廓。它将H0,H1和HV主动轮廓统一起来。第四,形状保持主动轮廓模型及其应用。针对某些特定目标的检测,本章提出了形状保持主动轮廓模型。此模型能够达到分割即目标的目的,同时能够给出目标的定量描述。基于此模型,本章实现了具有椭圆、直线和平行四边形轮廓特征目标的检测。椭圆形状约束用于眼底图像分割。直线和平行四边行分别用于自动目标识别中的天际线检测和机场跑道跟踪。
Resumo:
Basin-scale heterogeneity contains information about the traces of the past sedimentary cycle and tectonic process, and has been a major concern to geophysicists because of its importance in resource exploration and development. In this paper, the sonic data of 30 wells of Sulige field are used to inverse the power-law spectra slope and correlation length which are measures of the heterogeneity of the velocity of the log using fractal and statistic correlation methods. By taking the heterogeneity parameters of different wells interpolated, we get power law spectra slope and correlation length contours reflecting the stratum heterogeneity. Then using correlation and gradient, we inverse the transverse heterogeneity of Sulige field. Reservior-scale heterogeneity influnce the distribution of remaining oil and hydrocarbon accumulation. Using wavelet modulus maximum method to divide the sedimentary cycle using Gr data, therefore we can calculate the heterogeneity parameter in each layer of each log. Then we get the heterogeneity distribution of each layer of Sulige field. Finally, we analyze the relation between the signal sigularity and the strata heterogeneity, and get two different sigularity profiles in different areas.
Resumo:
Firstly, prosodic boundaries of 1991 common sentences were labeled based on speech perception experiment, relation between prosodic structure and syntactic structure was examined after immediate constituent analysis, an example of prosodic phrasing from text sentences was provided using CART. Then, using designed sentences, phenomena of downstep and declination in pitch downtrend of Chinese declarative sentences were examined, commonness and speciality of Chinese intonation were discussed. The main results of the study are: 1 The distribution patterns of prosodic phrase boundaries for different syntactic structures are different, and there is great freedom in prosodic chunking. The relation between syntactic structure and prosodic structure can only be discussed in statistical sense. 2 Besides of syntactic relation, the second most important factor which influences prosodic phrase boundaries is length. The distances to the front boundary and the back boundary are more important than the lengths of the left syntactic contituent and the right one. In our corpus, the length distributions of prosodic phrases are 5±3 syllables. 3 Automatic downstep can lower intonation linearly, but is affected by stress easily. Non-automatic downstep lowers the higher part of pitch contours and has no effect on the lower one of the intonation. 4 The downtrend reason of low point is declination. The extent of declination relates to not only tones of low points, but also their positions in prosodic words, the baselines decline much faster when low point are in the initial position of a prosodic word. In long sentences, the baselines of prosodic phrases are the basic declination units, and the whole declination pattern of a sentence is related to syntactic relations between two neighboring prosodic phrases.
Resumo:
Crowding, generally defined as the deleterious influence of nearby contours on visual discrimination, is ubiquitous in spatial vision. Specifically, long-range effects of non-overlapping distracters can alter the appearance of an object, making it unrecognizable. Theories in many domains, including vision computation and high-level attention, have been proposed to account for crowding. However, neither compulsory averaging model nor insufficient spatial esolution of attention provides an adequate explanation for crowding. The present study examined the effects of perceptual organization on crowding. We hypothesize that target-distractor segmentation in crowding is analogous to figure-ground segregation in Gestalt. When distractors can be grouped as a whole or when they are similar to each other but different from the target, the target can be distinguished from distractors. However, grouping target and distractors together by Gestalt principles may interfere with target-distractor separation. Six experiments were carried out to assess our theory. In experiments 1, 2, and 3, we manipulated the similarity between target and distractor as well as the configuration of distractors to investigate the effects of stimuli-driven grouping on target-distractor segmentation. In experiments 4, 5, and 6, we focused on the interaction between bottom-up and top-down processes of grouping, and their influences on target-distractor segmentation. Our results demonstrated that: (a) when distractors were similar to each other but different from target, crowding was eased; (b) when distractors formed a subjective contour or were placed regularly, crowding was also reduced; (c) both bottom-up and top-down processes could influence target-distractor grouping, mediating the effects of crowding. These results support our hypothesis that the figure-ground segregation and target-distractor segmentation in crowding may share similar processes. The present study not only provides a novel explanation for crowding, but also examines the processing bottleneck in object recognition. These findings have significant implications on computer vision and interface design as well as on clinical practice in amblyopia and dyslexia.
Resumo:
Certain salient structures in images attract our immediate attention without requiring a systematic scan. We present a method for computing saliency by a simple iterative scheme, using a uniform network of locally connected processing elements. The network uses an optimization approach to produce a "saliency map," a representation of the image emphasizing salient locations. The main properties of the network are: (i) the computations are simple and local, (ii) globally salient structures emerge with a small number of iterations, and (iii) as a by-product of the computations, contours are smoothed and gaps are filled in.
Resumo:
The recognition of objects with smooth bounding surfaces from their contour images is considerably more complicated than that of objects with sharp edges, since in the former case the set of object points that generates the silhouette contours changes from one view to another. The "curvature method", developed by Basri and Ullman [1988], provides a method to approximate the appearance of such objects from different viewpoints. In this paper we analyze the curvature method. We apply the method to ellipsoidal objects and compute analytically the error obtained for different rotations of the objects. The error depends on the exact shape of the ellipsoid (namely, the relative lengths of its axes), and it increases a sthe ellipsoid becomes "deep" (elongated in the Z-direction). We show that the errors are usually small, and that, in general, a small number of models is required to predict the appearance of an ellipsoid from all possible views. Finally, we show experimentally that the curvature method applies as well to objects with hyperbolic surface patches.
Resumo:
We present an image-based approach to infer 3D structure parameters using a probabilistic "shape+structure'' model. The 3D shape of a class of objects may be represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes can then be estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We augment the shape model to incorporate structural features of interest; novel examples with missing structure parameters may then be reconstructed to obtain estimates of these parameters. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a dataset of thousands of pedestrian images generated from a synthetic model, we can perform accurate inference of the 3D locations of 19 joints on the body based on observed silhouette contours from real images.
Resumo:
Weighted graph matching is a good way to align a pair of shapes represented by a set of descriptive local features; the set of correspondences produced by the minimum cost of matching features from one shape to the features of the other often reveals how similar the two shapes are. However, due to the complexity of computing the exact minimum cost matching, previous algorithms could only run efficiently when using a limited number of features per shape, and could not scale to perform retrievals from large databases. We present a contour matching algorithm that quickly computes the minimum weight matching between sets of descriptive local features using a recently introduced low-distortion embedding of the Earth Mover's Distance (EMD) into a normed space. Given a novel embedded contour, the nearest neighbors in a database of embedded contours are retrieved in sublinear time via approximate nearest neighbors search. We demonstrate our shape matching method on databases of 10,000 images of human figures and 60,000 images of handwritten digits.
Resumo:
Recovering a volumetric model of a person, car, or other object of interest from a single snapshot would be useful for many computer graphics applications. 3D model estimation in general is hard, and currently requires active sensors, multiple views, or integration over time. For a known object class, however, 3D shape can be successfully inferred from a single snapshot. We present a method for generating a ``virtual visual hull''-- an estimate of the 3D shape of an object from a known class, given a single silhouette observed from an unknown viewpoint. For a given class, a large database of multi-view silhouette examples from calibrated, though possibly varied, camera rigs are collected. To infer a novel single view input silhouette's virtual visual hull, we search for 3D shapes in the database which are most consistent with the observed contour. The input is matched to component single views of the multi-view training examples. A set of viewpoint-aligned virtual views are generated from the visual hulls corresponding to these examples. The 3D shape estimate for the input is then found by interpolating between the contours of these aligned views. When the underlying shape is ambiguous given a single view silhouette, we produce multiple visual hull hypotheses; if a sequence of input images is available, a dynamic programming approach is applied to find the maximum likelihood path through the feasible hypotheses over time. We show results of our algorithm on real and synthetic images of people.
Resumo:
For applications involving the control of moving vehicles, the recovery of relative motion between a camera and its environment is of high utility. This thesis describes the design and testing of a real-time analog VLSI chip which estimates the focus of expansion (FOE) from measured time-varying images. Our approach assumes a camera moving through a fixed world with translational velocity; the FOE is the projection of the translation vector onto the image plane. This location is the point towards which the camera is moving, and other points appear to be expanding outward from. By way of the camera imaging parameters, the location of the FOE gives the direction of 3-D translation. The algorithm we use for estimating the FOE minimizes the sum of squares of the differences at every pixel between the observed time variation of brightness and the predicted variation given the assumed position of the FOE. This minimization is not straightforward, because the relationship between the brightness derivatives depends on the unknown distance to the surface being imaged. However, image points where brightness is instantaneously constant play a critical role. Ideally, the FOE would be at the intersection of the tangents to the iso-brightness contours at these "stationary" points. In practice, brightness derivatives are hard to estimate accurately given that the image is quite noisy. Reliable results can nevertheless be obtained if the image contains many stationary points and the point is found that minimizes the sum of squares of the perpendicular distances from the tangents at the stationary points. The FOE chip calculates the gradient of this least-squares minimization sum, and the estimation is performed by closing a feedback loop around it. The chip has been implemented using an embedded CCD imager for image acquisition and a row-parallel processing scheme. A 64 x 64 version was fabricated in a 2um CCD/ BiCMOS process through MOSIS with a design goal of 200 mW of on-chip power, a top frame rate of 1000 frames/second, and a basic accuracy of 5%. A complete experimental system which estimates the FOE in real time using real motion and image scenes is demonstrated.
Resumo:
How the visual system extracts shape information from a single grey-level image can be approached by examining how the information about shape is contained in the image. This technical report considers the characteristic equations derived by Horn as a dynamical system. Certain image critical points generate dynamical system critical points. The stable and unstable manifolds of these critical points correspond to convex and concave solution surfaces, giving more general existence and uniqueness results. A new kind of highly parallel, robust shape from shading algorithm is suggested on neighborhoods of these critical points. The information at bounding contours in the image is also analyzed.
Resumo:
The problem of using image contours to infer the shapes and orientations of surfaces is treated as a problem of statistical estimation. The basis for solving this problem lies in an understanding of the geometry of contour formation, coupled with simple statistical models of the contour generating process. This approach is first applied to the special case of surfaces known to be planar. The distortion of contour shape imposed by projection is treated as a signal to be estimated, and variations of non-projective origin are treated as noise. The resulting method is then extended to the estimation of curved surfaces, and applied successfully to natural images. Next, the geometric treatment is further extended by relating countour curvature to surface curvature, using cast shadows as a model for contour generation. This geometric relation, combined with a statistical model, provides a measure of goodness-of-fit between a surface and an image contour. The goodness-of-fit measure is applied to the problem of establishing registration between an image and a surface model. Finally, the statistical estimation strategy is experimentally compared to human perception of orientation: human observers' judgements of tilt correspond closely to the estimates produced by the planar strategy.