932 resultados para Field of Library Science
Resumo:
Liquidus temperatures and phase equilibria have been determined in the olivine primary phase field of the MgO-FeO-SiO2-Al2O3 system. Liquidus isotherms have been determined in the temperature range from 1748 to 1873K. The results are presented in the form of pseudo-ternary sections of the MgO-FeO-SiO2 with 2 and 3wt% Al2O3 in the liquid. The study enables the liquidus to be described for a range of SiO2/MgO ratios. It was found that liquidus temperatures in the olivine primary phase field decrease with the addition of Al2O3.
Resumo:
Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.
Resumo:
PURPOSE. The driving environment is becoming increasingly complex, including both visual and auditory distractions within the in- vehicle and external driving environments. This study was designed to investigate the effect of visual and auditory distractions on a performance measure that has been shown to be related to driving safety, the useful field of view. METHODS. A laboratory study recorded the useful field of view in 28 young visually normal adults (mean 22.6 +/- 2.2 years). The useful field of view was measured in the presence and absence of visual distracters (of the same angular subtense as the target) and with three levels of auditory distraction (none, listening only, listening and responding). RESULTS. Central errors increased significantly (P < 0.05) in the presence of auditory but not visual distracters, while peripheral errors increased in the presence of both visual and auditory distracters. Peripheral errors increased with eccentricity and were greatest in the inferior region in the presence of distracters. CONCLUSIONS. Visual and auditory distracters reduce the extent of the useful field of view, and these effects are exacerbated in inferior and peripheral locations. This result has significant ramifications for road safety in an increasingly complex in-vehicle and driving environment.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
While openness is well applied to software development and exploitation (open sources), and successfully applied to new business models (open innovation), fundamental and applied research seems to lag behind. Even after decades of advocacy, in 2011 only 50% of the public-funded research was freely available and accessible (Archambault et al., 2013). The current research workflows, stemming from a pre-internet age, result in loss of opportunity not only for the researchers themselves (cf. extensive literature on topic at Open Access citation project, http://opcit.eprints.org/), but also slows down innovation and application of research results (Houghton & Swan, 2011). Recent studies continue to suggest that lack of awareness among researchers, rather than lack of e-infrastructure and methodology, is a key reason for this loss of opportunity (Graziotin 2014). The session will focus on why Open Science is ideally suited to achieving tenure-relevant researcher impact in a “Publish or Perish” reality. Open Science encapsulates tools and approaches for each step along the research cycle: from Open Notebook Science to Open Data, Open Access, all setting up researchers for capitalising on social media in order to promote and discuss, and establish unexpected collaborations. Incorporating these new approaches into a updated personal research workflow is of strategic beneficial for young researchers, and will prepare them for expected long term funder trends towards greater openness and demand for greater return on investment (ROI) for public funds.