919 resultados para Fibres commissurales


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Softness of apparel textiles is a major attribute sought by consumers. There is surprisingly little objective information on the softness properties of rare animal fibres, particularly cashmere, alpaca and mohair. Samples of these and other rare animal fibres from different origins of production and processors were objectively measured for fibre diameter, fibre curvature (FC, crimp) and resistance to compression (softness). While there were curvilinear responses of resistance to compression to FC and to mean fibre diameter, FC accounted for much more of the variance in resistance to compression. Fibre type was an important determinant of resistance to compression. The softest fibres were alpaca, mohair and cashgora and all of the fibres measured were softer than most Merino wool. Quivet, llama, camel, guanaco, vicuña, yak wool, bison wool, dehaired cow down and Angora rabbit were also differentiated from alpaca, mohair and cashmere. There were important differences in the softness and FC of cashmere from different origins with cashmere from newer origins of production (Australia, New Zealand and USA) having lower resistance to compression than cashmere from traditional sources of China and Iran. Cashmere from different origins was differentiated on the basis of resistance to compression, FC and fibre diameter. Cashgora was differentiated from cashmere by having a lower FC and lower resistance to compression. There were minority effects of colour and fibre diameter variation on resistance to compression of cashmere. The implications of these findings for the identification and use of softer raw materials are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple continuous flow wet-spinning method for assembling fibres consisting of two oppositely charged biopolymers (chitosan and carrageenan) and carbon nanotubes is reported. It was observed that the order in which the biopolymers are added, i.e. spinning chitosan into one of the carrageenans (or vice versa), affects the fibre composition as well as the resulting electrical and mechanical properties. The addition of carbon nanotubes into the fibres was found to improve Young's modulus values coupled with a significant improvement in the electrical conductivity by up to 6 orders of magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a range of animals, increasing mean fibre diameter (MFD) of fibre is associated with an increasing incidence of medullated fibres (Med). It would thus be expected that Med in mohair fleeces, from animals in a flock, would be related to the MFD of those fleeces. MFD of mohair is not the only dimensional attribute of fibres. Med in mohair is phenotypically and genetically related to the size of animals. This study examined how Med is related to dimensional properties of mohair over the lifetime of Angora goats and how the relationship varies with other lifetime factors. The relationship found is then examined to determine the extent that the relationship can be explained by variations in animal size of the goats. Measurements were made over 11 shearing periods on a population of Angora goats representing the current range and diversity of genetic origins in Australia, including South African, Texan and interbred admixtures of these and Australian sources. Records of breed, sire, dam, date of birth, dam age, birth weight, birth parity, weaning weight, live weight, fleece growth and fleece attributes were taken for castrated males (wethers). Animals’ fleece-free live weight (FFLwt, kg) were determined for each goat at shearing time by subtracting the greasy fleece weight from the live weight recorded immediately prior to shearing. The average of the FFLwt at the start of the period and the FFLwt at the end of the period was calculated. Two restricted maximum likelihood (REML) models were developed to relate Med to MFD, staple length (SL) and other lifetime factors. One model allowed FFLwt in the model and the other excluded FFLwt. With the exception of the 1.5 years shearing, Med strongly increased with increasing MFD whether or not adjustments were made for FFLwt measurements. In particular Med increased by 2.0% for each 1 μm increase in MFD, with no adjustment for FFLwt measurements, and increased by 1.5% for each 1 μm increase in MFD, with adjustment for FFLwt measurements. Within each shearing interval increasing average FFLwt was associated with increasing incidence of Med in a similar way to that which has been previously reported without including MFD in the model. There was no evidence that SL needed to be included in the models for Med. Mohair grown by the goats of Mixed genetic background grew mohair which had a higher incidence of Med at ages 2 and 2.5 years and the trend was apparent in other shearing periods. We can conclude that there is both a large response of Med to live weight and a large response to MFD, and that these responses are largely functionally separate. While the response to MFD is in accord with earlier work, there is an unrelated and unreported physiological mechanism that favours the production of Med in larger Angora goats. Clearly, larger Angora goats are biologically different compared with smaller animals from the same flock, in ways that are not purely related to the allometrics of size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During his PhD studies, Zhiqiang published 5 journal paper and 7 conference paper and also participated in the development of the first Plasma Research Laboratory at Institute of Frontier Materials.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-step plasma treatment—activation, functionalization and polymerization—has been used to deposit a thin plasma polymer with amine groups on carbon fibres (CFs). This plasma polymer has strong adhesion to the CF surface and the amine groups enable strong bonding to a matrix. The CFs were first treated by Ar plasma to activate and clean the surface, followed by O2 plasma to incorporate oxygen-containing functional groups, and finally a heptylamine thin film was deposited using combined continuous wave and pulsed plasma polymerization. Strong adhesion between the plasma polymer and the CF was observed. The fibre strength was not affected by the treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been well demonstrated that the impact loading resistance capacity of the concrete material can be effectively increased by adding fibres. Recent studies proved that compared to other conventional steel fibres, using steel fibres with spiral shape further increases the post-failure energy absorption and crack stopping capacities of concrete because of the better bonds in the concrete matrix and larger deformation ability. The present study conducts high rate impact tests using split Hopkinson pressure bar (SHPB) to further investigate the dynamic compressive properties of spiral fibre reinforced concrete (SFRC). SFRC specimens with different volume fractions of fibres ranging from zero to 1.5% are prepared and tested. The influences of different volume fractions of fibres on strength, stress-strain relation and energy absorption of SFRC specimens under quasi-static and dynamic loadings are studied. In SHPB compression tests, the strain rate achieved ranges from 50 1/s to 200 1/s. Highspeed camera is used to capture the failure processes and failure modes of SFRC specimens with different fibre volume fractions during the tests for comparison. Dynamic stress-strain curves under different strain rates are derived. The energy absorption capacities of the tested specimens are obtained and compared. Strain rate effects on the compressive strength are also discussed. The corresponding empirical DIF (dynamic increase factor) relations for SFRC are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of bamboo fibres extracted from raw bamboo plants in an environmentally benign manner were investigated. To reduce environmental impacts of the manufacturing process, microwave, ultra-sonication and enzyme were used to extract the bamboo fibres, avoiding the use of hazardous chemicals. The new method enabled the extraction of single fibres while retaining a certain quantity of lignin in fibre. The retained lignin allowed the fibre to possess UV absorption and antibacterial properties, which will be advantageous for many textile applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we show that ionic liquids (ILs), protic or aprotic in nature containing a phosphate anion, can be used as effective impregnating compounds resulting in a 50% improvement of the carbon yield of cellulose based carbon fibres and a 70 °C reduction in the onset of the depolymerization temperature. Using 13C NMR and FTIR spectra, we characterize the carbonized fibres with and without IL impregnates. The oxidative step in the formation of carbon fibres from cellulose precursors is very important in determining the final material properties, as such we examine this stage and show that the IL reduces the onset of the cellulose depolymerization temperature while improving the oxidative stability. This study highlights the ability of ILs to act as novel impregnates which can successfully reduce the formation of tar and volatile substances during carbonization of cellulose based carbon fibres resulting in an improved carbon yield and significant cost savings due to reduced maintenance and wear of equipment. This journal is

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Felting is a unique attribute of animal fibres used for the production of a range of industrial and apparel textiles. Felting can be an adverse attribute as a consequence of dimensional shrinkage during laundering. As there is little objective information regarding the feltability of rare animal fibres or the factors which may affect felting three investigations were undertaken. A survey (n = 114) of the feltability of cashmere from different origins of production, cashgora, quivet, camel hair, llama, guanaco, bison wool, cow fibre and yak wool quantified the large variation between and within these fibre types. Cashmere from some origins and cashgora produced higher feltball density than the other fibres. Different nutritional management of cashmere goats (n = 35) showed that cashmere grown by poorly fed goats had a lower propensity to felt compared with cashmere grown by better fed goats. A consequence of the progressive blending of cashmere (n = 27) with a low propensity to felt superfine wool (high fibre curvature) increased the propensity of the blend to felt, but when the same cashmere was blended with low curvature superfine wool, there was little or no effect on feltability. The mechanisms which lead to variance in feltability of these fibres were quantified with multiple regression modelling. The mechanisms were similar to those reported for wools, namely variations in the resistance to compression, fibre curvature and mean fibre diameter, with likely effects of fibre crimp form. It is possible to source cashmere and other animal fibres which have different propensities to felt and therefore to produce textiles which are likely to have different textile properties.