855 resultados para Fiber reinforced materials


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is an effective extension of NDE to reduce down time and cost of Inspection of structural components. On – line monitoring is an essential part of SHM. Acoustic Emission Techniques have most of the desirable requirements of an effective SHM tool. With the kind of advancement seen in the last couple of decades in the field of electronics, computers and signal processing technologies it can only be more helpful in obtaining better and meaningful quantitative results which can further enhance the potential of AET for the purpose. Advanced Composite materials owing to their specific high performance characteristics are finding a wide range of engineering applications. Testing and Evaluation of this category of materials and SHM of composite structures have been very challenging problems due to the very nature of these materials. Mechanical behaviour of fiber composite materials under different loading conditions is complex and involves different types of failure mechanisms. This is where the potential of AET can be exploited effectively. This paper presents an over view of some relevant studies where AET has been utilised to test, evaluate and monitor health of composite structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The design and implementation of a morphing Micro Air Vehicle (MAV) wing using a smart composite is attempted in this research work. Control surfaces actuated by traditional servos are difficult to instrument and fabricate on thin composite-wings of MAVs. Piezoelectric Fiber Reinforced Composites (PFRCs) are the chosen smart structural materials in the current work for incorporation onto fixed-wing MAVs to simultaneously perform the dual functions of structural load-bearing and actuation of flexure, torsion and/or extension for morphing. Further, PFRC use can be extended towards shape control of a “fixed” wing MAV to meet changing performance requirements. Wings that can warp into desired shapes and/or have variable camber are well-known to exhibit improved efficiency in aerodynamic control. During an entire flight cycle, there are multiple optimal configurations, each of which suits a particular phase of the flight regime. Widely proposed methods of wing morphing include changes in camber, twist, sweep and span. However, camber change during flight is already established, in terms of its potential, as a major factor in improving the aerofoil efficiency and flow separation behavior. Hence, for this work, morphing with camber change is adopted with the goal to better tailor aerodynamic properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon Fiber Reinforced Plastic composites were fabricated through vacuum resin infusion technology by adopting two different processing conditions, viz., vacuum only in the first and vacuum plus external pressure in the next, in order to generate two levels of void-bearing samples. They were relatively graded as higher and lower void-bearing ones, respectively. Microscopy and C-scan techniques were utilized to describe the presence of voids arising from the two different processing parameters. Further, to determine the influence of voids on impact behavior, the fabricated +45 degrees/90 degrees/-45 degrees composite samples were subjected to low velocity impacts. The tests show impact properties like peak load and energy to peak load registering higher values for the lower void-bearing case where as the total energy, energy for propagation and ductility indexes were higher for the higher void-bearing ones. Fractographic analysis showed that higher void-bearing samples display lower number of separation of layers in the laminate. These and other results are described and discussed in this report.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Damage mechanisms in unidirectional (UD) and bi-directional (BD) woven carbon fiber reinforced polymer (CFRP) laminates subjected to four point flexure, both in static and fatigue loadings, were studied. The damage progression in composites was monitored by observing the slopes of the load vs. deflection data that represent the stiffness of the given specimen geometry over a number of cycles. It was observed that the unidirectional composites exhibit gradual loss in stiffness whereas the bidirectional woven composites show a relatively quicker loss during stage II of fatigue damage progression. Both, the static and the fatigue failures in unidirectional carbon fiber reinforced polymer composites originates due to generation of cracks on compression face while in bidirectional woven composites the damage ensues from both the compression and the tensile faces. These observations are supported by a detailed fractographic analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unreinforced masonry (URM) structures that are in need of repair and rehabilitation constitute a significant portion of building stock worldwide. The successful application of fiber-reinforced polymers (FRP) for repair and retrofitting of reinforced-concrete (RC) structures has opened new avenues for strengthening URM structures with FRP materials. The present study analyzes the behavior of FRP-confined masonry prisms under monotonic axial compression. Masonry comprising of burnt clay bricks and cement-sand mortar (generally adopted in the Indian subcontinent) having E-b/E-m ratio less than one is employed in the study. The parameters considered in the study are, (1) masonry bonding pattern, (2) inclination of loading axis to the bed joint, (3) type of FRP (carbon FRP or glass FRP), and (4) grade of FRP fabric. The performance of FRP-confined masonry prisms is compared with unconfined masonry prisms in terms of compressive strength, modulus of elasticity and stress-strain response. The results showed an enhancement in compressive strength, modulus of elasticity, strain at peak stress, and ultimate strain for FRP-confined masonry prisms. The FRP confinement of masonry resulted in reducing the influence of the inclination of the loading axis to the bed joint on the compressive strength and failure pattern. Various analytical models available in the literature for the prediction of compressive strength of FRP-confined masonry are assessed. New coefficients are generated for the analytical model by appending experimental results of the current study with data available in the literature. (C) 2014 American Society of Civil Engineers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental and numerical investigations were carried out using lamb waves to study the degradation in adhesive joints made of carbon fiber reinforced plastic (CFRP) adherends and epoxy adhesive. Degradation was inducted into the epoxy adhesive by adding different amounts of polyvinyl alcohol. Fundamental lamb wave modes were excited in the CFRP adherends using piezoelectric transducer disks and made to propagate through the adhesive layer. The received waveforms across adhesive joints with varied degradation were studied. A 2D finite element model was utilized to verify the experimental results. Good correlation was observed between numerical and experimental results. Details of the investigation and results obtained are presented in the paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Determination of shear strength of brick-mortar bed joint is critical to overcome the sliding-shear or joint-shear failure in masonry. In the recent past, researchers have attempted to enhance the shear strength and deformation capacity of brick-mortar bed joints by gluing fiber-reinforced polymer (FRP) composite across the bed joint. FRP composites offer several advantages like high strength-to-weight ratio, and ease of application in terms of labor, time, and reduced curing period. Furthermore, FRP composites are desirable for strengthening old masonry buildings having heritage value because of its minimal interference with the existing architecture. A majority of earlier studies on shear strengthening of masonry available in the literature adopted masonry having the ratio of modulus of elasticity of masonry unit (Emu) to modulus of elasticity of mortar (Em) greater than one. Information related to shear behavior of FRP glued masonry composed of masonry units having Young's modulus lower than mortar is limited. Hence the present study is focused on characterizing the interfacial behavior of brick-mortar bed joint of masonry assemblages composed of solid burnt clay bricks and cement-sand mortar (E-mu/E-m ratio less than one), strengthened with FRP composites. Masonry triplets and prisms with bed joint inclined to loading axis (0 degrees, 30 degrees, 45 degrees, 60 degrees and 90 degrees) are employed in this study. Glass and carbon FRP composites composed of bidirectional FRP fabric with equal density in both directions are used for strengthening masonry. Masonry triplets are glued with glass and carbon FRP composites in two configurations: (1) both faces of the triplet specimens are fully glued with GFRP composites; and (2) both faces of the triplet specimens are glued with GFRP and CFRP composites in strip form. The performance of masonry assemblages strengthened with FRP composites is assessed in terms of gain in shear strength, shear displacement, and postpeak behavior for various configurations and types of FRP composites considered. A semianalytical model is proposed for the prediction of shear strength of masonry bed joints glued with FRP composites. A composite failure envelope consisting of a Coulomb friction model and a compression cap is obtained for unreinforced masonry and GFRP-strengthened masonry based on the test results of masonry triplets and masonry prisms with bed joints having various inclinations to the loading (C) 2015 American Society of Civil Engineers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work intends to demonstrate the effect of geometrically non-linear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting the three-dimensional warping of the cross-section. The only restriction in the present analysis is that the strains within each elastic body remain small (i.e., this work does not deal with materials exhibiting non-linear constitutive laws at the 3-D level). Here, all component bars of the mechanism are made of fiber-reinforced laminates. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction, results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis, the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here. The representative cross-sections of all component bars are analyzed using two different approaches: (1) Numerical Model and (2) Analytical Model. Four-bar mechanisms are analyzed using the above two approaches for Omega = 20 rad/s and Omega = pi rad/s and observed the same behavior in both cases. The noticeable snap-shots of the deformation shapes of the mechanism about 1000 frames are also reported using commercial software (I-DEAS + NASTRAN + ADAMS). The maximum out-of-plane warping of the cross-section is observed at the mid-span of bar-1, bar-2 and bar-3 are 1.5 mm, 250 mm and 1.0 mm, respectively, for t = 0:5 s. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A material model, whose framework is parallel spring-bundles oriented in 3-D space, is proposed. Based on a discussion of the discrete schemes and optimum discretization of the solid angles, a 3-D network cell consisted of one-dimensional components is developed with its geometrical and physical parameters calibrated. It is proved that the 3-D network model is able to exactly simulate materials with arbitrary Poisson ratio from 0 to 1/2, breaking through the limit that the previous models in the literature are only suitable for materials with Poisson ratio from 0 to 1/3. A simplified model is also proposed to realize high computation accuracy within low computation cost. Examples demonstrate that the 3-D network model has particular superiority in the simulation of short-fiber reinforced composites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A three-phase confocal elliptical cylinder model is proposed for fiber-reinforced composites, in terms of which a generalized self-consistent method is developed for fiber-reinforced composites accounting for variations in fiber section shapes and randomness in fiber section orientation. The reasonableness of the fiber distribution function in the present model is shown. The dilute, self-consistent, differential and Mori-Tanaka methods are also extended to consider randomness in fiber section orientation in a statistical sense. A full comparison is made between various micromechanics methods and with the Hashin and Shtrikman's bounds. The present method provides convergent and reasonable results for a full range of variations in fiber section shapes (from circular fibers to ribbons), for a complete spectrum of the fiber volume fraction (from 0 to 1, and the latter limit shows the correct asymptotic behavior in the fully packed case) and for extreme types of the inclusion phases (from voids to rigid inclusions). A very different dependence of the five effective moduli on fiber section shapes is theoretically predicted, and it provides a reasonable explanation on the poor correlation between previous theory and experiment in the case of longitudinal shear modulus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An infinite elastic solid containing a doubly periodic parallelogrammic array of cylindrical inclusions under longitudinal shear is studied. A rigorous and effective analytical method for exact solution is developed by using Eshelby's equivalent inclusion concept integrated with the new results from the doubly quasi-periodic Riemann boundary value problems. Numerical results show the dependence of the stress concentrations in such heterogeneous materials on the periodic microstructure parameters. The overall longitudinal shear modulus of composites with periodic distributed fibers is also studied. Several problems of practical importance, such as those of doubly periodic holes or rigid inclusions, singly periodic inclusions and single inclusion, are solved or resolved as special cases. The present method can provide benchmark results for other numerical and approximate methods. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

本论文主要研究线弹性纤维增强复合材料在冲击载荷作用下裂纹的动态起裂行为。全文共分六章。第一章对裂纹动态起始问题的研究方法和纤维增强复合材料中裂纹动态起始问题的国内外研究现状进行了综述,确定了本论文的主要研究内容和研究方法。第二章用有限元方法研究有限尺度含裂纹纤维增强复合材料板在阶跃冲击载荷作用下的动力响应,分析了裂尖附近的应力分布、应力波在板中的传播和应力强度因子时间历程。第三章根据第二章的计算结果用线弹性简单梁理论和拉格朗日运动方程研究了各向同性材料和纤维增强复合材料中裂纹在阶跃冲击载荷作用下的动力响应和起裂行为,得到了应力强度因子初始上升阶段的数学表达式和裂纹起裂的临界载荷面。第四章提出了用于单向和层合纤维增强复合材料裂纹静态和动态起始预测的拟应力强度因子比准则。该准则将裂纹的起裂和起裂方向的预测合二为一,只需测定材料的四个基本动态断裂韧性,就可据此准则对任意角度单向板中裂纹的起裂和起裂方向进行预测,用于层合板时,还可以对铺层裂纹的起裂顺序进行预测。第五章用SHTB(分离式Hopkinson拉杆)技术对纤维增强复合材料裂纹动态起始问题进行了实验研究。测量了碳纤维增强环氧树脂复合材料板裂纹起裂的I型动态断裂韧性,并首次验证了拟应力强度因子比准则在裂纹动态起裂预测中的合理性。第六章对全文进行了总结,归纳了本论文的主要结论,并展望了今后的研究工作。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most space applications require deployable structures due to the limiting size of current launch vehicles. Specifically, payloads in nanosatellites such as CubeSats require very high compaction ratios due to the very limited space available in this typo of platform. Strain-energy-storing deployable structures can be suitable for these applications, but the curvature to which these structures can be folded is limited to the elastic range. Thanks to fiber microbuckling, high-strain composite materials can be folded into much higher curvatures without showing significant damage, which makes them suitable for very high compaction deployable structure applications. However, in applications that require carrying loads in compression, fiber microbuckling also dominates the strength of the material. A good understanding of the strength in compression of high-strain composites is then needed to determine how suitable they are for this type of application.

The goal of this thesis is to investigate, experimentally and numerically, the microbuckling in compression of high-strain composites. Particularly, the behavior in compression of unidirectional carbon fiber reinforced silicone rods (CFRS) is studied. Experimental testing of the compression failure of CFRS rods showed a higher strength in compression than the strength estimated by analytical models, which is unusual in standard polymer composites. This effect, first discovered in the present research, was attributed to the variation in random carbon fiber angles respect to the nominal direction. This is an important effect, as it implies that microbuckling strength might be increased by controlling the fiber angles. With a higher microbuckling strength, high-strain materials could carry loads in compression without reaching microbuckling and therefore be suitable for several space applications.

A finite element model was developed to predict the homogenized stiffness of the CFRS, and the homogenization results were used in another finite element model that simulated a homogenized rod under axial compression. A statistical representation of the fiber angles was implemented in the model. The presence of fiber angles increased the longitudinal shear stiffness of the material, resulting in a higher strength in compression. The simulations showed a large increase of the strength in compression for lower values of the standard deviation of the fiber angle, and a slight decrease of strength in compression for lower values of the mean fiber angle. The strength observed in the experiments was achieved with the minimum local angle standard deviation observed in the CFRS rods, whereas the shear stiffness measured in torsion tests was achieved with the overall fiber angle distribution observed in the CFRS rods.

High strain composites exhibit good bending capabilities, but they tend to be soft out-of-plane. To achieve a higher out-of-plane stiffness, the concept of dual-matrix composites is introduced. Dual-matrix composites are foldable composites which are soft in the crease regions and stiff elsewhere. Previous attempts to fabricate continuous dual-matrix fiber composite shells had limited performance due to excessive resin flow and matrix mixing. An alternative method, presented in this thesis uses UV-cure silicone and fiberglass to avoid these problems. Preliminary experiments on the effect of folding on the out-of-plane stiffness are presented. An application to a conical log-periodic antenna for CubeSats is proposed, using origami-inspired stowing schemes, that allow a conical dual-matrix composite shell to reach very high compaction ratios.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Para reabilitar a ausência de um elemento dentário posterior, as próteses parciais fixas (PPF) com retentores intracoronários são uma alternativa aos implantes osseointegrados. O objetivo deste estudo foi avaliar a distribuição de tensões nessas próteses com três combinações de materiais: cerâmica de zircônia parcialmente estabilizada por ítria (ZPEI) revestida por cerâmica de fluorapatita (α), cerâmica de dissilicato de lítio (β) ou compósito fibrorreforçado (γ). Na composição α, foram analisadas a presença ou ausência da cerâmica de revestimento na parede cervical das caixas proximais e três variações na área total da seção transversal dos conectores (4 mm de largura x 3,2, 4,2 ou 5,2 mm de altura). Em 8 modelos bidimensionais de elementos finitos, uma carga vertical de 500 N foi aplicada na fossa central do pôntico e as tensões principais máximas (tração) e mínimas (compressão) foram apontadas em MPa. Inicialmente foram avaliados os 6 modelos com PPF de ZPEI e suas variações. Os maiores valores das tensões de tração foram encontrados no terço cervical dos conectores. Quando presente nestas regiões, a cerâmica de revestimento recebeu tensões acima do limite de sua resistência à flexão. Na comparação entre os modelos sem cerâmica de revestimento na parede cervical das caixas proximais, mesmo aquele com conectores de 3,2 x 4 mm, cuja infraestrutura apresentava 2,5 x 3 mm, poderia ser recomendado para uso clínico. Altos valores de tensões de compressão foram registrados entre o terço oclusal e médio dos conectores, correspondente à união entre as cerâmicas, o que poderia ocasionar, devido à flexão, falhas adesivas. Posteriormente, o modelo de ZPEI com a cerâmica de fluorapatita ausente da parede cervical das caixas proximais e área total dos conectores de 4,2 x 4 mm foi comparado aos dois outros materiais com conectores de mesma área. Na PPF de dissilicato de lítio, os valores representaram uma provável violação do limite de sua resistência à flexão. A PPF de compósito fibrorreforçado apresentou tensões bem abaixo do limite de resistência à flexão de sua infraestrutura, mas, como no modelo de ZPEI, tensões compressivas se concentraram com alto valor entre o terço oclusal e médio dos conectores, local de união entre a resina composta e a infraestrutura de fibras. Os resultados mostraram que a cerâmica de dissilicato de lítio e a presença da cerâmica de fluorapatita na parede cervical das caixas proximais deveriam ser contraindicadas para a condição proposta. Parece viável uma área de conectores na infraestrutura de ZPEI com no mínimo 2,5 x 3 mm. A PPF de compósito fibrorreforçado apresenta resistência estrutural para a situação estudada, mas, como também aquelas compostas de ZPEI, aparenta ter como pontos fracos a adesão entre a infraestrutura e o material de cobertura e a própria resistência deste último.