903 resultados para Ferromagnetic particles
Resumo:
Atmospheric aerosol particles affect the global climate as well as human health. In this thesis, formation of nanometer sized atmospheric aerosol particles and their subsequent growth was observed to occur all around the world. Typical formation rate of 3 nm particles at varied from 0.01 to 10 cm-3s-1. One order of magnitude higher formation rates were detected in urban environment. Highest formation rates up to 105 cm-3s-1 were detected in coastal areas and in industrial pollution plumes. Subsequent growth rates varied from 0.01 to 20 nm h-1. Smallest growth rates were observed in polar areas and the largest in the polluted urban environment. This was probably due to competition between growth by condensation and loss by coagulation. Observed growth rates were used in the calculation of a proxy condensable vapour concentration and its source rate in vastly different environments from pristine Antarctica to polluted India. Estimated concentrations varied only 2 orders of magnitude, but the source rates for the vapours varied up to 4 orders of magnitude. Highest source rates were in New Delhi and lowest were in the Antarctica. Indirect methods were applied to study the growth of freshly formed particles in the atmosphere. Also a newly developed Water Condensation Particle Counter, TSI 3785, was found to be a potential candidate to detect water solubility and thus indirectly composition of atmospheric ultra-fine particles. Based on indirect methods, the relative roles of sulphuric acid, non-volatile material and coagulation were investigated in rural Melpitz, Germany. Condensation of non-volatile material explained 20-40% and sulphuric acid the most of the remaining growth up to a point, when nucleation mode reached 10 to 20 nm in diameter. Coagulation contributed typically less than 5%. Furthermore, hygroscopicity measurements were applied to detect the contribution of water soluble and insoluble components in Athens. During more polluted days, the water soluble components contributed more to the growth. During less anthropogenic influence, non-soluble compounds explained a larger fraction of the growth. In addition, long range transport to a measurement station in Finland in a relatively polluted air mass was found to affect the hygroscopicity of the particles. This aging could have implications to cloud formation far away from the pollution sources.
Resumo:
Fabrication of multilayer microcapsules via layer-by-layer approach through hydrogen bonding has attracted enormous interest due to its strong response to pH. In this communication, we have prepared hydrogen-bonded multilayer microcapsule without using any cross-linking agent by using DNA base pair (adenine and thymine) modified biocompatible polymers. The growth of the self-assembly on colloidal (melamine formaldehyde: MF) particles has been monitored with zeta potential measurement. The capsules were obtained on dissolution of MF particles at 0.1N HCl. The capsules were characterized with scanning electron microscopy. Moreover, we have observed the salt induced microscopic change in self-assembly of this system on the surface of colloidal particles.
Resumo:
We present a search for the technicolor particles $\rho_{T}$ and $\pi_{T}$ in the process $p\bar{p} \to \rho_{T} \to W\pi_{T}$ at a center of mass energy of $\sqrt{s}=1.96 \mathrm{TeV}$. The search uses a data sample corresponding to approximately $1.9 \mathrm{fb}^{-1}$ of integrated luminosity accumulated by the CDF II detector at the Fermilab Tevatron. The event signature we consider is $W\to \ell\nu$ and $\pi_{T} \to b\bar{b}, b\bar{c}$ or $b\bar{u}$ depending on the $\pi_{T}$ charge. We select events with a single high-$p_T$ electron or muon, large missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with multiple $b$-tagging algorithms. The observed number of events and the invariant mass distributions are consistent with the standard model background expectations, and we exclude a region at 95% confidence level in the $\rho_T$-$\pi_T$ mass plane. As a result, a large fraction of the region $m(\rho_T) = 180$ - $250 \mathrm{GeV}/c^2$ and $m(\pi_T) = 95$ - $145 \mathrm{GeV}/c^2$ is excluded.
Resumo:
We present a measurement of the transverse momentum with respect to the jet axis (kt) of particles in jets produced in pp̅ collisions at √s=1.96 TeV. Results are obtained for charged particles in a cone of 0.5 radians around the jet axis in events with dijet invariant masses between 66 and 737 GeV/c2. The experimental data are compared to theoretical predictions obtained for fragmentation partons within the framework of resummed perturbative QCD using the modified leading log and next-to-modified leading log approximations. The comparison shows that trends in data are successfully described by the theoretical predictions, indicating that the perturbative QCD stage of jet fragmentation is dominant in shaping basic jet characteristics.
Resumo:
We performed a signature-based search for long-lived charged massive particles (CHAMPs) produced in 1.0 $\rm{fb}^{-1}$ of $\bar{p}p$ collisions at $\sqrt{s}=1.96$ TeV, collected with the CDF II detector using a high transverse-momentum ($p_T$) muon trigger. The search used time-of-flight to isolate slowly moving, high-$p_T$ particles. One event passed our selection cuts with an expected background of $1.9 \pm 0.2$ events. We set an upper bound on the production cross section, and, interpreting this result within the context of a stable scalar top quark model, set a lower limit on the particle mass of 249 GeV/$c^2$ at 95% C.L.
Resumo:
We present a measurement of the transverse momentum with respect to the jet axis ($k_{T}$) of particles in jets produced in $p\bar p$ collisions at $\sqrt{s}=1.96$ TeV. Results are obtained for charged particles within a cone of opening angle 0.5 radians around the jet axis in events with dijet invariant masses between 66 and 737 GeV/c$^{2}$. The experimental data are compared to theoretical predictions obtained for fragmentation partons within the framework of resummed perturbative QCD using the modified leading log and next-to-modified leading log approximations. The comparison shows that trends in data are successfully described by the theoretical predictions, indicating that the perturbative QCD stage of jet fragmentation is dominant in shaping basic jet characteristics.
Resumo:
We present a search for new particles whose decays produce two jets (dijets) using proton-antiproton collision data corresponding to an integrated luminosity of 1.13 fb-1 collected with the CDF II detector. The measured dijet mass spectrum is found to be consistent with next-to-leading-order perturbative QCD predictions, and no significant evidence of new particles is found. We set upper limits at the 95% confidence level on cross sections times the branching fraction for the production of new particles decaying into dijets with both jets having a rapidity magnitude |y|
Resumo:
Manganese dioxide is known to be an important electroactive material for supercapacitors. Generally, delta-MnO2 is subjected to electrochemical characterization studies in aqueous electrolytes of Na2SO4. It exhibits capacitance behaviour in the potential range between 0 and 1.0 V vs. SCE (saturated calomel electrode). In the present study, it is shown that delta-MnO2 exhibits capacitance behaviour in Sr(NO3)(2) electrolytes also. The suitable potential range in this electrolyte is also found to be 0-1.0 V. Specific capacitancemeasured in Sr(NO3)(2) electrolyte is 192 F g(-1). X-ray photoelectron spectroscopy data confirm that Sr2+ ions get inserted onto delta-MnO2 anoparticles. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An indirect mechanism of light scattering from spin-waves in ferromagnetic insulators via two-magnon one-phonon process is proposed. Following linear response theory, an expression has been derived for the differential scattering cross-section in the mean-field-approximation.
Resumo:
Usually metallicity accompanies ferromagnetism. K2Cr8O16 is one of the less common examples of magnetic materials, exhibiting ferromagnetism in the insulating state. Analyzing the electronic and magnetic properties within first principles electronic structure calculations, we find that the doped electrons due to K induce a charge-ordered and insulating ground state and interestingly also introduce a ferromagnetic coupling between the Cr ions. The primary considerations driving the charge ordering are found to be electrostatic ones with the charge being localized on two Cr atoms that minimize the electrostatic energy. The structural distortion that accompanies the ordering gives rise to a rare example of a charge-order driven ferromagnetic insulator.
Resumo:
Nd0.5Ca0.5MnO3 nanoparticles (average diameter similar to 20 and 40 nm) are synthesized by the polymeric precursor sol-gel method and characterized by various physico-chemical techniques. Quite strikingly, in the 20 nm particles, the charge-ordered (CO) and the antiferromagnetic phases observed in the bulk below 250 K and 160 K, respectively, are completely absent. Instead, a ferromagnetic (FM) transition is observed at 95 K followed by an insulator-to-metal transition at 75 K. The 40 nm particles show a residual CO phase but a transition to the FM state also occurs, at a slightly higher temperature of 110 K.