998 resultados para Fenótipo Tr-1


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Please see TR-477 Phase 2 Final Report -- http://publications.iowa.gov/id/eprint/20041

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, individuals including designers, contractors, and owners learn about the project requirements by studying a combination of paper and electronic copies of the construction documents including the drawings, specifications (standard and supplemental), road and bridge standard drawings, design criteria, contracts, addenda, and change orders. This can be a tedious process since one needs to go back and forth between the various documents (paper or electronic) to obtain information about the entire project. Object-oriented computer-aided design (OO-CAD) is an innovative technology that can bring a change to this process by graphical portrayal of information. OO-CAD allows users to point and click on portions of an object-oriented drawing that are then linked to relevant databases of information (e.g., specifications, procurement status, and shop drawings). The vision of this study is to turn paper-based design standards and construction specifications into an object-oriented design and specification (OODAS) system or a visual electronic reference library (ERL). Individuals can use the system through a handheld wireless book-size laptop that includes all of the necessary software for operating in a 3D environment. All parties involved in transportation projects can access all of the standards and requirements simultaneously using a 3D graphical interface. By using this system, users will have all of the design elements and all of the specifications readily available without concerns of omissions. A prototype object-oriented model was created and demonstrated to potential users representing counties, cities, and the state. Findings suggest that a system like this could improve productivity to find information by as much as 75% and provide a greater sense of confidence that all relevant information had been identified. It was also apparent that this system would be used by more people in construction than in design. There was also concern related to the cost to develop and maintain the complete system. The future direction should focus on a project-based system that can help the contractors and DOT inspectors find information (e.g., road standards, specifications, instructional memorandums) more rapidly as it pertains to a specific project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of chemicals is a critical part of a pro-active winter maintenance program. However, ensuring that the correct chemicals are used is a challenge. On the one hand, budgets are limited, and thus price of chemicals is a major concern. On the other, performance of chemicals, especially at lower pavement temperatures, is not always assured. Two chemicals that are used extensively by the Iowa Department of Transportation (Iowa DOT) are sodium chloride (or salt) and calcium chloride. While calcium chloride can be effective at much lower temperatures than salt, it is also considerably more expensive. Costs for a gallon of salt brine are typically in the range of $0.05 to $0.10, whereas calcium chloride brine may cost in the range of $1.00 or more per gallon. These costs are of course subject to market forces and will thus change from year to year. The idea of mixing different winter maintenance chemicals is by no means new, and in general discussions it appears that many winter maintenance personnel have from time to time mixed up a jar of chemicals and done some work around the yard to see whether or not their new mix “works.” There are many stories about the mixture turning to “mayonnaise” (or, more colorfully, to “snot”) suggesting that mixing chemicals may give rise to some problems most likely due to precipitation. Further, the question of what constitutes a mixture “working” in this context is a topic of considerable discussion. In this study, mixtures of salt brine and calcium chloride brine were examined to determine their ice melting capability and their freezing point. Using the results from these tests, a linear interpolation model of the ice melting capability of mixtures of the two brines has been developed. Using a criterion based upon the ability of the mixture to melt a certain thickness of ice or snow (expressed as a thickness of melt-water equivalent), the model was extended to develop a material cost per lane mile for the full range of possible mixtures as a function of temperature. This allowed for a comparison of the performance of the various mixtures. From the point of view of melting capacity, mixing calcium chloride brine with salt brine appears to be effective only at very low temperatures (around 0° F and below). However, the approach described herein only considers the material costs, and does not consider application costs or other aspects of the mixture performance than melting capacity. While a unit quantity of calcium chloride is considerably more expensive than a unit quantity of sodium chloride, it also melts considerably more ice. In other words, to achieve the same result, much less calcium chloride brine is required than sodium chloride brine. This is important in considering application costs, because it means that a single application vehicle (for example, a brine dispensing trailer towed behind a snowplow) can cover many more lane miles with calcium chloride brine than with salt brine before needing to refill. Calculating exactly how much could be saved in application costs requires an optimization of routes used in the application of liquids in anti-icing, which is beyond the scope of the current study. However, this may be an area that agencies wish to pursue for future investigation. In discussion with winter maintenance personnel who use mixtures of sodium chloride and calcium chloride, it is evident that one reason for this is because the mixture is much more persistent (i.e. it stays longer on the road surface) than straight salt brine. Operationally this persistence is very valuable, but at present there are not any established methods to measure the persistence of a chemical on a pavement. In conclusion, the study presents a method that allows an agency to determine the material costs of using various mixtures of salt brine and calcium chloride brine. The method is based upon the requirement of melting a certain quantity of snow or ice at the ice-pavement interface, and on how much of a chemical or of a mixture of chemicals is required to do that.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes results from a study evaluating the use of stringless paving using a combination of global positioning and laser technologies. CMI and Geologic Computer Systems developed this technology and successfully implemented it on construction earthmoving and grading projects. Concrete paving is a new area for considering this technology. Fred Carlson Co. agreed to test the stringless paving technology on two challenging concrete paving projects located in Washington County, Iowa. The evaluation was conducted on two paving projects in Washington County, Iowa, during the summer of 2003. The research team from Iowa State University monitored the guidance and elevation conformance to the original design. They employed a combination of physical depth checks, surface location and elevation surveys, concrete yield checks, and physical survey of the control stakes and string line elevations. A final check on profile of the pavement surface was accomplished by the use of the Iowa Department of Transportation Light Weight Surface Analyzer (LISA). Due to the speed of paving and the rapid changes in terrain, the laser technology was abandoned for this project. Total control of the guidance and elevation controls on the slip-form paver were moved from string line to global positioning systems (GPS). The evaluation was a success, and the results indicate that GPS control is feasible and approaching the desired goals of guidance and profile control with the use of three dimensional design models. Further enhancements are needed in the physical features of the slipform paver oil system controls and in the computer program for controlling elevation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this research project was to develop a method to measure the performance of a winter maintenance program with respect to the task of providing safety and mobility to the travelling public. Developing these measures required a number of steps, each of which was accomplished. First, the impact of winter weather on safety (crash rates) and mobility (average vehicle speeds were measured by a combination of literature reviews and analysis of Iowa Department of Transportation traffic and Road Weather Information System data. Second, because not all winter storms are the same in their effects on safety and mobility, a method had to be developed to determine how much the various factors that describe a winter storm actually change safety and mobility. As part of this effort a storm severity index was developed, which ranks each winter storm on a scale between 0 (a very benign storm) and 1 (the worst imaginable storm). Additionally a number of methods of modeling the relationships between weather, winter maintenance actions and road surface conditions were developed and tested. The end result of this study was a performance measure based on average vehicle speed. For a given class of road, a maximum expected average speed reduction has been identified. For a given storm, this maximum expected average speed reduction is modified by the storm severity index to give a target average speed reduction. Thus, if for a given road the maximum expected average speed reduction is 20 mph, and the storm severity for a particular storm is 0.6, then the target average speed reduction for that road in that storm is 0.6 x 20 mph or 12 mph. If the average speed on that road during and after the storm is only 12 mph or less than the average speed on that road in good weather conditions, then the winter maintenance performance goal has been met.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this study is to determine the effectiveness of the Electrochemical Chloride Extraction (ECE) technique on a bridge deck with very high concentrations of chloride. This ECE technique was used during the summer of 2003 to reverse the effects of corrosion, which had occurred in the reinforcing steel embedded in the pedestrian bridge deck over Highway 6, along Iowa Avenue, in Iowa City, Iowa, USA. First, the half cell potential was measured to determine the existing corrosion level in the field. The half-cell potential values were in the indecisive range of corrosion (between -200 mV and -350 mV). The ECE technique was then applied to remove the chloride from the bridge deck. The chloride content in the deck was significantly reduced from 25 lb/cy to 4.96 lb/cy in 8 weeks. Concrete cores obtained from the deck were measured for their compressive strengths and there was no reduction in strength due to the ECE technique. Laboratory tests were also performed to demonstrate the effectiveness of the ECE process. In order to simulate the corrosion in the bridge deck, two reinforced slabs and 12 reinforced beams were prepared. First, the half-cell potentials were measured from the test specimens and they all ranged below -200 mV. Upon introduction of 3% salt solution, the potential reached up to -500 mV. This potential was maintained while a salt solution was being added for six months. The ECE technique was then applied to the test specimens in order to remove the chloride from them. Half-cell potential was measured to determine if the ECE technique can effectively reduce the level of corrosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this investigation was to evaluate the Compensatory Wetland Mitigation Program at the Iowa Department of Transportation (DOT) in terms of regulatory compliance. Specific objectives included: 1) Determining if study sites meet the definition of a jurisdictional wetland. 2) Determining the degree of compliance with requirements specified in Clean Water Act Section 404 permits. A total of 24 study sites, in four age classes were randomly selected from over 80 sites currently managed by the Iowa DOT. Wetland boundaries were delineated in the field and mitigation compliance was determined by comparing the delineated wetland acreage at each study site to the total wetland acreage requirements specified in individual CWA Section 404 permits. Of the 24 sites evaluated in this study, 58 percent meet or exceed Section 404 permit requirements. Net gain ranged from 0.19 acre to 27.2 acres. Net loss ranged from 0.2 acre to 14.6 acres. The Denver Bypass 1 site was the worst performer, with zero acres of wetland present on the site and the Akron Wetland Mitigation Site was the best performer with slightly more than 27 acres over the permit requirement. Five of the 10 under-performing sites are more than five years post construction, two are five years post construction, one is three years post construction and the remaining two are one year post construction. Of the sites that meet or exceed permit requirements, approximately 93 percent are five years or less post construction and approximately 43 percent are only one year old. Only one of the 14 successful sites is more than five years old. Using Section 404 permit acreage requirements as the criteria for measuring success, 58 percent of the wetland mitigation sites investigated as part of this study are successful. Using net gain/loss as the measure of success, the Compensatory Wetland Mitigation Program has been successful in creating/restoring nearly 44 acres of wetland over what was required by permits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of the collapse of a 140 foot high-mast lighting tower in Sioux City, Iowa in November of 2003, a thorough investigation into the behavior and design of these tall, yet relatively flexible structures was undertaken. Extensive work regarding the root cause of this failure was carried out by Robert Dexter of The University of Minnesota. Furthermore, a statewide inspection of all the high-mast towers in Iowa revealed fatigue cracks and loose anchor bolts on other existing structures. The current study was proposed to examine the static and dynamic behavior of a variety of towers in the State of Iowa utilizing field testing, specifically long-term monitoring and load testing. This report presents the results and conclusions from this project. The field work for this project was divided into two phases. Phase 1 of the project was conducted in October 2004 and focused on the dynamic properties of ten different towers in Clear Lake, Ames, and Des Moines, Iowa. Of those ten, two were also instrumented to obtain stress distributions at various details and were included in a 12 month long-term monitoring study. Phase 2 of this investigation was conducted in May of 2005, in Sioux City, Iowa, and focused on determining the static and dynamic behavior of a tower similar to the one that collapsed in November 2003. Identical tests were performed on a similar tower which was retrofitted with a more substantial replacement bottom section in order to assess the effect of the retrofit. A third tower with different details was dynamically load tested to determine its dynamic characteristics, similar to the Phase 1 testing. Based on the dynamic load tests, the modal frequencies of the towers fall within the same range. Also, the damping ratios are significantly lower in the higher modes than the values suggested in the AASHTO and CAN/CSA specifications. The comparatively higher damping ratios in the first mode may be due to aerodynamic damping. These low damping ratios in combination with poor fatigue details contribute to the accumulation of a large number of damage-causing cycles. As predicted, the stresses in the original Sioux City tower are much greater than the stresses in the retrofitted towers at Sioux City. Additionally, it was found that poor installation practices which often lead to loose anchor bolts and out-of-level leveling nuts can cause high localized stresses in the towers, which can accelerate fatigue damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A statewide study was performed to develop regional regression equations for estimating selected annual exceedance- probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedanceprobability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized leastsquares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized leastsquares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this project was to assess the predictive accuracy of flood frequency estimation for small Iowa streams based on the Rational Method, the NRCS curve number approach, and the Iowa Runoff Chart. The evaluation was based on comparisons of flood frequency estimates at sites with sufficiently long streamgage records in the Midwest, and selected urban sites throughout the United States. The predictive accuracy and systematic biases (under- or over-estimation) of the approaches was evaluated based on forty-six Midwest sites and twenty-one urban sites. The sensitivity of several watershed characteristics such as soil properties, slope, and land use classification was also explored. Recommendations on needed changes or refinements for applications to Iowa streams are made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overarching goal of the proposed research was to provide a predictive tool for knickpoint propagation within the HCA (Hungry Canyon Alliance) territory. Knickpoints threaten the stability of bridge structures in Western Iowa. The study involved detailed field investigations over two years in order to monitor the upstream migration of a knickpoint on Mud Creek in Mills County, IA and identify the key mechanisms triggering knickpoint propagation. A state-of-the-art laser level system mounted on a movable truss provided continuous measurements of the knickpoint front for different flow conditions. A pressure transducer found in proximity of the truss provided simultaneous measurements of the flow depth. The laser and pressure transducer measurements led to the identification of the conditions at which the knickpoint migration commences. It was suggested that negative pressures developed by the reverse roller flow near the toe of the knickpoint face triggered undercutting of the knickpoint at this location. The pressure differential between the negative pressure and the atmospheric pressure also draws the impinging jet closer to the knickpoint face producing scour. In addition, the pressure differential may induce suction of sediment from the face. Other contributing factors include slump failure, seepage effects, and local fluvial erosion due to the exerted fluid shear. The prevailing flow conditions and soil information along with the channel cross-sectional geometry and gradient were used as inputs to a transcritical, one dimensional, hydraulic/geomorphic numerical model, which was used to map the flow characteristics and shear stress conditions near the knickpoint. Such detailed flow calculations do not exist in the published literature. The coupling of field and modeling work resulted in the development of a blueprint methodology, which can be adopted in different parts of the country for evaluating knickpoint evolution. This information will assist local government agencies in better understanding the principal factors that cause knickpoint propagation and help estimate the needed response time to control the propagation of a knickpoint after one has been identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main function of a roadway culvert is to effectively convey drainage flow during normal and extreme hydrologic conditions. This function is often impaired due to the sedimentation blockage of the culvert. This research sought to understand the mechanics of sedimentation process at multi-box culverts, and develop self-cleaning systems that flush out sediment deposits using the power of drainage flows. The research entailed field observations, laboratory experiments, and numerical simulations. The specific role of each of these investigative tools is summarized below: a) The field observations were aimed at understanding typical sedimentation patterns and their dependence on culvert geometry and hydrodynamic conditions during normal and extreme hydrologic events. b) The laboratory experiments were used for modeling sedimentation process observed insitu and for testing alternative self-cleaning concepts applied to culverts. The major tasks for the initial laboratory model study were to accurately replicate the culvert performance curves and the dynamics of sedimentation process, and to provide benchmark data for numerical simulation validation. c) The numerical simulations enhanced the understanding of the sedimentation processes and aided in testing flow cases complementary to those conducted in the model reducing the number of (more expensive) tests to be conducted in the laboratory. Using the findings acquired from the laboratory and simulation works, self-cleaning culvert concepts were developed and tested for a range of flow conditions. The screening of the alternative concepts was made through experimental studies in a 1:20 scale model guided by numerical simulations. To ensure the designs are effective, performance studies were finally conducted in a 1:20 hydraulic model using the most promising design alternatives to make sure that the proposed systems operate satisfactory under closer to natural scale conditions.