938 resultados para Fatigue Crack Nucleation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

As recentes descobertas de petróleo e gás na camada do Pré-sal representam um enorme potencial exploratório no Brasil, entretanto, os desafios tecnológicos para a exploração desses recursos minerais são imensos e, consequentemente, têm motivado o desenvolvimento de estudos voltados a métodos e materiais eficientes para suas produções. Os tubos condutores de petróleo e gás são denominados de elevadores catenários ou do inglês \"risers\", e são elementos que necessariamente são soldados e possuem fundamental importância nessa cadeia produtiva, pois transportam petróleo e gás natural do fundo do mar à plataforma, estando sujeitos a carregamentos dinâmicos (fadiga) durante sua operação. Adicionalmente, um dos problemas centrais à produção de óleo e gás das reservas do Pré-Sal está diretamente associado a meios altamente corrosivos, tais como H2S e CO2. Uma forma mais barata de proteção dos tubos é a aplicação de uma camada de um material metálico resistente à corrosão na parte interna desses tubos (clad). Assim, a união entre esses tubos para formação dos \"risers\" deve ser realizada pelo emprego de soldas circunferenciais de ligas igualmente resistentes à corrosão. Nesse contexto, como os elementos soldados são considerados possuir defeitos do tipo trinca, para a garantia de sua integridade estrutural quando submetidos a carregamentos cíclicos, é necessário o conhecimento das taxas de propagação de trinca por fadiga da solda circunferencial. Assim, neste trabalho, foram realizados ensaios de propagação de trinca por fadiga na região da solda circunferencial de Inconel® 625 realizada em tubo de aço API 5L X65 cladeado, utilizando corpos de prova do tipo SEN(B) (Single Edge Notch Bending) com relações entre espessura e largura (B/W) iguais a 0,5, 1 e 2. O propósito central deste trabalho foi de obter a curva da taxa de propagação de trinca por fadiga (da/dN) versus a variação do fator de intensidade de tensão (ΔK) para o metal de solda por meio de ensaios normatizados, utilizando diferentes técnicas de acompanhamento e medição da trinca. A monitoração de crescimento da trinca foi feita por três técnicas: variação da flexibilidade elástica (VFE), queda de potencial elétrico (QPE) e análise de imagem (Ai). Os resultados mostraram que as diferentes relações B/W utilizadas no estudo não alteraram significantemente as taxas de propagação de trinca por fadiga, respeitado que a propagação aconteceu em condições de escoamento em pequena escala na frente da trinca. Os resultados de propagação de trinca por fadiga permitiram a obtenção das regiões I e II da curva da/dN versus ΔK para o metal de solda. O valor de ΔKlim obtido para o mesmo foi em torno de 11,8 MPa.m1/2 e os valores encontrados das constantes experimentais C e m da equação de Paris-Erdogan foram respectivamente iguais a 1,55 x10-10 [(mm/ciclo)/(MPa.m1/2)m] e 4,15. A propagação de trinca no metal de solda deu-se por deformação plástica, com a formação de estrias de fadiga.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2XXX and 7XXX series aluminium alloys have been the accepted materials for airframe construction for many decades. However, only minor improvements in properties have been possible by the development of these alloys since the early 1970's. The constant need to reduce weight in aircraft has therefore led to a resurgence in the research for higher performance aluminium alloys. The reason for this investigation was to evaluate possible alternatives for the existing conventional aluminium alloy 2014 for aircraft wheel applications. Three new technologies in alloy development were considered: a metal matrix composite, an aluminium-lithium alloy and a powder metallurgical alloy. The basic mechanical properties of these advanced materials have already been established to an extent, but their fatigue behaviour has yet to be fully understood. The purpose of this work was to investigate the fatigue properties of the materials concerned, in both air and an aerated 3.5% NaCl solution, and compare these properties to 2014-T6. As well as the basic mechanical properties, fatigue crack propagation data is presented for all of the materials concerned. Additionally, fatigue crack initiation data is presented for the aluminium-lithium alloy and 2014. The D.C. electrical potential method was used to monitor crack growth. Of the materials investigated, the most promising was the aluminium-lithium alloy. However, short transverse properties need to be increased and the commercial cost of the material needs to be decreased before it can be considered as a direct replacement for 2014 for aircraft structural applications. It was considered that the cost of the powder metallurgical alloy would limit its further use. The metal matrix composite material proved to be unsuitable for most ambient temperature applications

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Static mechanical properties of 2124 Al/SiCp MMC have been measured as a function of solution temperature and time. An optimum solution treatment has been established which produces significant improvements in static mechanical properties and fatigue crack growth resistance over conventional solution treatments. Increasing the solution treatment parameters up to the optimum values improves the mechanical properties because of intermetallic dissolution, improved solute and GPB zone strengthening and increased matrix dislocation density. Increasing the solution treatment parameters beyond the optimum values results in a rapid reduction in mechanical properties due to the formation of gas porosity and surface blisters. The optimum solution treatment improves tensile properties in the transverse orientation to a greater extent than in the longitudinal orientation and this results in reduced anisotropy. © 1996 Elsevier Science Limited.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fatigue testing was performed using a kind of triangular shaped specimen to obtain the characteristics of numerical density evolution for short cracks at the primary stage of fatigue damage. The material concerned is a structural alloy steel. The experimental results show that the numerical density of short cracks reaches the maximum value when crack length is slightly less than the average grain diameter, indicating grain boundary is the main barrier for short crack extension. Based on the experimental observations and related theory, the expressions for growth velocity and nucleation rate of short cracks have been proposed. With the solution to phase space conservation equation, the theoretical results of numerical density evolution for short cracks were obtained, which were in agreement with our experimental measurements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problems of dislocation nucleation and emission from a crack tip are analysed based on Peierls model. The concept adopted here is essentially the same as that proposed by Rice. A slight modification is introduced here to identify the pure linear elastic response of material. A set of new governing equations is developed, which is different from that used by Beltz and Rice. The stress field and the dislocation density field can be expressed as the first and second Chebyshev polynomial series respectively. Then the opening and slip displacements can be expanded as the trigonometric series. The Newton-Raphson Method is used to solve a set of nonlinear algebraic equations. The new governing equations allow us to extend the analyses to the case of dislocation emission. The calculation results for pure shearing, pure tension and combined tension and shear loading are given in detail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fatigue failure is a result of a crack initiation and propagation, in consequence of a cyclical load. In aeronautical components as landing gear the fatigue strength is an important parameter to be considered in project, as well as the corrosion and wear resistance.The thermal sprayed HVOF technology it's normally used to protect components against wear and corrosion, and are being considerate an alternative to replace chromium by the aeronautical industry. With respect to fatigue life, the HVOF technique induces residual stress on the interface. In the case of tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. The technique to improve the coated materials fatigue strength is the shot peening process, which induces residual stress in the surface in order to delay the nucleation and propagation process.The aim of present study is to compare the influence of WC-10 Ni coating applied by HVOF on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue tests for material base, and tungsten carbide coated specimens. (C) 2010 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fatigue thresholds and slow crack growth rates have been measured in a powder formed nickel-base superalloy from room temperature to 600°C. Two grain sizes were investigated: 5-12 μm and 50 μm. It is shown that the threshold increases with grain size, and the difference is most pronounced at room temperature. Although crack growth rates increase with temperature in both microstructures, the threshold is only temperature dependent in the material with the larger grain size. It is also only in the latter that the room temperature threshold falls when the load ratio is increased from 0.1 to 0.5. At 600°C the higher load ratio causes a 20% reduction in the threshold irrespective of grain size. The results are discussed in terms of surface roughness and oxide-induced crack closure, the former being critically related to the type of crystallographic crack growth, which is in turn shown to be both temperature and stress intensity dependent. © 1983.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a strategy to predict the lifetime of rails subjected to large rolling contact loads that induce ratchetting strains in the rail head. A critical element concept is used to calculate the number of loading cycles needed for crack initiation to occur in the rail head surface. In this technique the finite element method (FEM) is used to determine the maximum equivalent ratchetting strain per load cycle, which is calculated by combining longitudinal and shear stains in the critical element. This technique builds on a previously developed critical plane concept that has been used to calculate the number of cycles to crack initiation in rolling contact fatigue under ratchetting failure conditions. The critical element concept simplifies the analytical difficulties of critical plane analysis. Finite element analysis (FEA) is used to identify the critical element in the mesh, and then the strain values of the critical element are used to calculate the ratchetting rate analytically. Finally, a ratchetting criterion is used to calculate the number of cycles to crack initiation from the ratchetting rate calculated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In conventional analysis and design procedures of reinforced concrete structures, the ability of concrete to resist tension is neglected. Under cyclic loading, the tension-softening behavior of concrete influences its residual strength and subsequent crack propagation. The stability and the residual strength of a cracked reinforced concrete member under fatigue loading, depends on a number of factors such as, reinforcement ratio, specimen size, grade of concrete, and the fracture properties, and also on the tension-softening behavior of concrete. In the present work, a method is proposed to assess the residual strength of a reinforced concrete member subjected to cyclic loading. The crack extension resistance based approach is used for determining the condition for unstable crack propagation. Three different idealization of tension softening models are considered to study the effect of post-peak response of concrete. The effect of reinforcement is modeled as a closing force counteracting the effect of crack opening produced by the external moment. The effect of reinforcement percentage and specimen size on the failure of reinforced beams is studied. Finally, the residual strength of the beams are computed by including the softening behavior of concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Modified Crack Closure Integral (MCCI) technique based on Irwin's crack closure integral concept is very effective for estimation of strain energy release rates G in individual as well as mixed-mode configurations in linear elastic fracture mechanics problems. In a finite element approach, MCCI can be evaluated in the post-processing stage in terms of nodal forces and displacements near the crack tip. The MCCI expressions are however, element dependent and require a systematic derivation using stress and displacement distributions in the crack tip elements. Earlier a general procedure was proposed by the present authors for the derivation of MCCI expressions for 3-dimensional (3-d) crack problems modelled with 8-noded brick elements. A concept of sub-area integration was proposed to estimate strain energy release rates at a large number of points along the crack front. In the present paper a similar procedure is adopted for the derivation of MCCI expressions for 3-d cracks modelled with 20-noded brick elements. Numerical results are presented for centre crack tension and edge crack shear specimens in thick slabs, showing a comparison between present results and those available in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Modified Crack Closure Integral (MCCI) technique based on Irwin's crack closure integral concept is very effective for estimation of strain energy release rates G in individual as well as mixed-mode configurations in linear elastic fracture mechanics problems. In a finite element approach, MCCI can be evaluated in the post-processing stage in terms of nodal forces and displacements near the crack tip. The MCCI expressions are however, element dependent and require a systematic derivation using stress and displacement distributions in the crack tip elements. Earlier a general procedure was proposed by the present authors for the derivation of MCCI expressions for 3-dimensional (3-d) crack problems modelled with 8-noded brick elements. A concept of sub-area integration was proposed to estimate strain energy release rates at a large number of points along the crack front. In the present paper a similar procedure is adopted for the derivation of MCCI expressions for 3-d cracks modelled with 20-noded brick elements. Numerical results are presented for centre crack tension and edge crack shear specimens in thick slabs, showing a comparison between present results and those available in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.