950 resultados para FREE-RADICAL GENERATION
Resumo:
Mitochondria have a fundamental role in the transduction of energy from food into ATP. The coupling between food oxidation and ATP production is never perfect, but may nevertheless be of evolutionary significance. The 'uncoupling to survive' hypothesis suggests that 'mild' mitochondrial uncoupling evolved as a protective mechanism against the excessive production of damaging reactive oxygen species (ROS). Because resource allocation and ROS production are thought to shape animal life histories, alternative life-history trajectories might be driven by individual variation in the degree of mitochondrial uncoupling. We tested this hypothesis in a small bird species, the zebra finch (Taeniopygia guttata), by treating adults with the artificial mitochondrial uncoupler 2,4-dinitrophenol (DNP) over a 32-month period. In agreement with our expectations, the uncoupling treatment increased metabolic rate. However, we found no evidence that treated birds enjoyed lower oxidative stress levels or greater survival rates, in contrast to previous results in other taxa. In vitro experiments revealed lower sensitivity of ROS production to DNP in mitochondria isolated from skeletal muscles of zebra finch than mouse. In addition, we found significant reductions in the number of eggs laid and in the inflammatory immune response in treated birds. Altogether, our data suggest that the 'uncoupling to survive' hypothesis may not be applicable for zebra finches, presumably because of lower effects of mitochondrial uncoupling on mitochondrial ROS production in birds than in mammals. Nevertheless, mitochondrial uncoupling appeared to be a potential life-history regulator of traits such as fecundity and immunity at adulthood, even with food supplied ad libitum.
Resumo:
As an alternative to the relatively complex and expensive spectroscopic methods, the redox properties of humic acids, determined by potentiometric titrations, have been used to evaluate the stability of soil organic C. The objective of the present study was to establish a Redox Index of C Stability (RICS) and to correlate it with some properties of the humic acids extracted from different modal soils in Brazil (distinct weathering stages or management) to facilitate system comparison. The RICS was efficient for soil comparison and variations were comparable to those of the chemical and spectroscopic methods used for humic acid characterization. The values of soil pH, point of zero salt effect, sum of bases, exchangeable Ca content, weathering index, as well as the humic acid O/C ratio, quinone and semiquinone free radical contents, aromatic C and fluorescence intensity were closely related with the RICS. The RICS was higher in less weathered soils, with more active clays and higher fertility. The RICS values of soils under long-term sugarcane management were ranked in decreasing order: unburned, burned with vinasse, burned without vinasse.
Resumo:
Birds exhibit exceptional longevity and are thus regarded as a convenient model to study the intrinsic mechanisms of aging. The oxidative stress theory of aging suggests that individuals age because molecules, cells, tissues, organs, and, ultimately, animals accumulate oxidative damage over time. Accumulation of damage progressively reduces the level of antioxidant defences that are expected to decline with age. To test this theory, we measured the resistance of red blood cells to free radical attack in a captive population of greater flamingo (Phoenicopterus ruber roseus) of known age ranging from 0.3 to 45 years. We observed a convex relationship with young adults (12-20 years old) having greater resistance to oxidative stress than immature flamingos (5 months old) and old flamingos (30-45 years old). Our results suggest that the antioxidant detoxifying system must go through a maturation process before being completely functional. It then declines in older adults, supporting the oxidative theory of aging. Oxidative stress could hence play a significant role in shaping the pattern of senescence in a very long-lived bird species.
Resumo:
Glutathione (GSH) dysregulation at the gene, protein, and functional levels has been observed in schizophrenia patients. Together with disease-like anomalies in GSH deficit experimental models, it suggests that such redox dysregulation can play a critical role in altering neural connectivity and synchronization, and thus possibly causing schizophrenia symptoms. To determine whether increased GSH levels would modulate EEG synchronization, N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients in a randomized, double-blind, crossover protocol for 60 days, followed by placebo for another 60 days (or vice versa). We analyzed whole-head topography of the multivariate phase synchronization (MPS) for 128-channel resting-state EEGs that were recorded at the onset, at the point of crossover, and at the end of the protocol. In this proof of concept study, the treatment with NAC significantly increased MPS compared to placebo over the left parieto-temporal, the right temporal, and the bilateral prefrontal regions. These changes were robust both at the group and at the individual level. Although MPS increase was observed in the absence of clinical improvement at a group level, it correlated with individual change estimated by Liddle's disorganization scale. Therefore, significant changes in EEG synchronization induced by NAC administration may precede clinically detectable improvement, highlighting its possible utility as a biomarker of treatment efficacy. TRIAL REGISTRATION: ClinicalTrials.gov NCT01506765.
Resumo:
Peroxynitrite induced in vitro a dose dependent toxicity on retinal pigmented epithelial (RPE) cells. Cell death was partially mediated by apoptosis as demonstrated by nuclear fragmentation and TdT-mediated dUTP nick-end labeling assay. Peroxynitrite-induced tyrosine nitration was revealed by immunocytochemistry, both in the cytoplasm and in the nucleus of the cells. Nitration was not observed in RPE cells, producing nitric oxide (NO) after stimulation by lipopolysacharide and interferon-g (IFN-gamma), suggesting that peroxynitrite was not formed in vitro in such conditions. Peroxynitrite could be responsible for the retinal damages observed in pathological conditions in which NO has been demonstrated to be involved. In this context, EGb761, identified as a free radical scavenger, was showed herein to protect RPE cells against peroxynitrite injury.
Resumo:
Osteoradionecrosis (ORN) of the mandible is the most serious and severe side effect of combined treatment of head and neck tumors. A new theory for the pathogenesis of ORN has been proposed relating it to a fibro-atrophic mechanism including free radical formation, endothelial dysfunction, inflammation, microvascular thrombosis leading to bone and tissue necrosis. Risk factors mainly include radiation related risk factors, surgery and, tobacco and alcohol abuse. Removing of diseased teeth after and even probably after radiotherapy is generally considered the main risk factor in ORN. Conversely, steroid use before or after radiation may have a protective effect related to the inhibition of the initial inflammatory phase of ORN. Prevention of ORN is still based on the preventive extractions of decayed or periodontally compromised teeth before radiotherapy. Based on the current understanding of ORN pathophysiology, new preventive and therapeutic protocols have been suggested for mild to moderate stages. Free tissue surgical transfers is the treatment of choice of severe, extensive and long established ORN.
Resumo:
It is widely accepted that protein oxidation is involved in a variety of diseases, including neurodegenerative diseases. Especially during aging, a reduction in anti-oxidant defence mechanisms leads to an increased formation of free radical oxygen species and consequently results in a damage of proteins, including mitochondrial and synaptic ones. Even those proteins involved in repair and protein clearance via the ubiquitin proteasome and lysosomal system are subject to damage and show a reduced function. Here, we will discuss a variety of mechanisms and provide examples where cognition is affected and where repair mechanisms are no longer sufficient to compensate for a dysfunction of damaged proteins or even may become toxic. Next to physiological deficits, an accumulation of deficient proteins in aggresomes may occur and result in a formation of pathological hallmark structures typical for aging and disease. A major challenge is how to prevent aberrant oxidation, given that oxidation plays an essential role in aging and neurodegenerative diseases. Particularly interesting are the possibilities to reduce the formation of radical oxygen species leading to a dysfunction of protein repair and protein clearance, or to a formation of toxic byproducts accelerating neurodegeneration.
Resumo:
Epidemiological and experimental studies have shown that hyperuricaemia and gout are intricately linked with hypertension, metabolic syndrome, chronic kidney disease and cardiovascular disease. A number of studies suggest that hyperuricaemia and gout are independent risk factors for the development of these conditions and that these conditions account, in part, for the increased mortality rate of patients with gout. In this Review, we first discuss the links between hyperuricaemia, gout and these comorbidities, and present the mechanisms by which uric acid production and gout might favour the development of cardiovascular and renal diseases. We then emphasize the potential benefit of urate-lowering therapies on cardiovascular and renal outcomes in patients with hyperuricaemia. The mechanisms that link elevated serum uric acid levels and gout with these comorbidities seem to be multifactorial, implicating low-grade systemic inflammation and xanthine oxidase (XO) activity, as well as the deleterious effects of hyperuricaemia itself. Patients with asymptomatic hyperuricaemia should be treated by nonpharmacological means to lower their SUA levels. In patients with gout, long-term pharmacological inhibition of XO is a treatment strategy that might also reduce cardiovascular and renal comorbidities, because of its dual effect of lowering SUA levels as well as reducing free-radical production during uric acid formation.
Resumo:
Ischemia/reperfusion (I/R) is a pivotal mechanism of liver damage after liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol (CBD), the nonpsychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, and gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor α (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, intercellular adhesion molecule 1 mRNA levels; tissue neutrophil infiltration; nuclear factor κB (NF-κB) activation), stress signaling (p38MAPK and JNK), and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress, and cell death and also attenuated the bacterial endotoxin-triggered NF-κB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecule expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB(2) knockout mice and were not prevented by CB(1/2) antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent of classical CB(1/2) receptors.
Resumo:
Bakery products such as biscuits, cookies, and pastries represent a good medium for iron fortification in food products, since they are consumed by a large proportion of the population at risk of developing iron deficiency anemia, mainly children. The drawback, however, is that iron fortification can promote oxidation. To assess the extent of this, palm oil added with heme iron and different antioxidants was used as a model for evaluating the oxidative stability of some bakery products, such as baked goods containing chocolate. The palm oil samples were heated at 220°C for 10 min to mimic the conditions found during a typical baking processing. The selected antioxidants were a free radical scavenger (tocopherol extract (TE), 0 and 500 mg/kg), an oxygen scavenger (ascorbyl palmitate (AP), 0 and 500 mg/kg), and a chelating agent (citric acid (CA), 0 and 300 mg/kg). These antioxidants were combined using a factorial design and were compared to a control sample, which was not supplemented with antioxidants. Primary (peroxide value and lipid hydroperoxide content) and secondary oxidation parameters (p-anisidine value, p-AnV) were monitored over a period of 200 days in storage at room temperature. The combination of AP and CA was the most effective treatment in delaying the onset of oxidation. TE was not effective in preventing oxidation. The p-AnV did not increase during the storage period, indicating that this oxidation marker was not suitable for monitoring oxidation in this model.
Resumo:
Bakery products such as biscuits, cookies, and pastries represent a good medium for iron fortification in food products, since they are consumed by a large proportion of the population at risk of developing iron deficiency anemia, mainly children. The drawback, however, is that iron fortification can promote oxidation. To assess the extent of this, palm oil added with heme iron and different antioxidants was used as a model for evaluating the oxidative stability of some bakery products, such as baked goods containing chocolate. The palm oil samples were heated at 220°C for 10 min to mimic the conditions found during a typical baking processing. The selected antioxidants were a free radical scavenger (tocopherol extract (TE), 0 and 500 mg/kg), an oxygen scavenger (ascorbyl palmitate (AP), 0 and 500 mg/kg), and a chelating agent (citric acid (CA), 0 and 300 mg/kg). These antioxidants were combined using a factorial design and were compared to a control sample, which was not supplemented with antioxidants. Primary (peroxide value and lipid hydroperoxide content) and secondary oxidation parameters (p-anisidine value, p-AnV) were monitored over a period of 200 days in storage at room temperature. The combination of AP and CA was the most effective treatment in delaying the onset of oxidation. TE was not effective in preventing oxidation. The p-AnV did not increase during the storage period, indicating that this oxidation marker was not suitable for monitoring oxidation in this model.
Resumo:
Different solvents were evaluated for the extraction of jabuticaba anthocyanin pigments, identifying, quantifying and verifying the stability of the anthocyanins, as well as the conduction of three antioxidant activity assays and determination of the vitamin C levels. The maceration with ethanol acidified with HCl 1.5 mol L-1 (85:15) provides better pigment extraction and stability. The skin is anthocyanin rich, presenting 1.59 and 2.06 g 100 g-1 of dry matter in the Paulista and Sabará varieties, respectively. Cyanidin 3-glucoside is the majority pigment of the skins, followed by delphinidin 3-glucoside. The highest level of vitamin C was found in the skins and seeds of both varieties. It was verified that the skins, presented more antioxidant activity, in free radical capture, as well as in retarding the lipid oxidation process.
Resumo:
The survival of preterm babies has increased over the last few decades. However, disorders associated with preterm birth, known as oxygen radical diseases of neonatology, such as retinopathy, bronchopulmonary dysplasia, periventricular leukomalacia, and necrotizing enterocolitis are severe complications related to oxidative stress, which can be defined by an imbalance between oxidative reactive species production and antioxidant defenses. Oxidative stress causes lipid, protein, and DNA damage. Preterm infants have decreased antioxidant defenses in response to oxidative challenges, because the physiologic increase of antioxidant capacity occurs at the end of gestation in preparation for the transition to extrauterine life. Therefore, preterm infants are more sensitive to neonatal oxidative stress, notably when supplemental oxygen is being delivered. Furthermore, despite recent advances in the management of neonatal respiratory distress syndrome, controversies persist concerning the oxygenation saturation targets that should be used in caring for preterm babies. Identification of adequate biomarkers of oxidative stress in preterm infants such as 8-iso-prostaglandin F2α, and adduction of malondialdehyde to hemoglobin is important to promote specific therapeutic approaches. At present, no therapeutic strategy has been validated as prevention or treatment against oxidative stress. Breastfeeding should be considered as the main measure to improve the antioxidant status of preterm infants. In the last few years, melatonin has emerged as a protective molecule against oxidative stress, with antioxidant and free-radical scavenger roles, in experimental and preliminary human studies, giving hope that it can be used in preterm infants in the near future.
Resumo:
Spectra of "white LEDs" are characterized by an intense emission in the blue region of the visible spectrum, absent in daylight spectra. This blue component and the high intensity of emission are the main sources of concern about the health risks of LEDs with respect to their toxicity to the eye and the retina. The aim of our study was to elucidate the role of blue light from LEDs in retinal damage. Commercially available white LEDs and four different blue LEDs (507, 473, 467, and 449nm) were used for exposure experiments on Wistar rats. Immunohistochemical stain, transmission electron microscopy, and Western blot were used to exam the retinas. We evaluated LED-induced retinal cell damage by studying oxidative stress, stress response pathways, and the identification of cell death pathways. LED light caused a state of suffering of the retina with oxidative damage and retinal injury. We observed a loss of photoreceptors and the activation of caspase-independent apoptosis, necroptosis, and necrosis. A wavelength dependence of the effects was observed. Phototoxicity of LEDs on the retina is characterized by a strong damage of photoreceptors and by the induction of necrosis.
Resumo:
Iron is essential for retinal function but contributes to oxidative stress-mediated degeneration. Iron retinal homeostasis is highly regulated and transferrin (Tf), a potent iron chelator, is endogenously secreted by retinal cells. In this study, therapeutic potential of a local Tf delivery was evaluated in animal models of retinal degeneration. After intravitreal injection, Tf spread rapidly within the retina and accumulated in photoreceptors and retinal pigment epithelium, before reaching the blood circulation. Tf injected in the vitreous prior and, to a lesser extent, after light-induced retinal degeneration, efficiently protected the retina histology and function. We found an association between Tf treatment and the modulation of iron homeostasis resulting in a decrease of iron content and oxidative stress marker. The immunomodulation function of Tf could be seen through a reduction in macrophage/microglial activation as well as modulated inflammation responses. In a mouse model of hemochromatosis, Tf had the capacity to clear abnormal iron accumulation from retinas. And in the slow P23H rat model of retinal degeneration, a sustained release of Tf in the vitreous via non-viral gene therapy efficently slowed-down the photoreceptors death and preserved their function. These results clearly demonstrate the synergistic neuroprotective roles of Tf against retinal degeneration and allow identify Tf as an innovative and not toxic therapy for retinal diseases associated with oxidative stress.