966 resultados para FAST ALGORITHM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work is the development of a methodology for electric load forecasting based on a neural network. Here, it is used Backpropagation algorithm with an adaptive process based on fuzzy logic. This methodology results in fast training, when compared to the conventional formulation of Backpropagation algorithm. Results are presented using data from a Brazilian Electric Company and the performance is very good for the proposal objective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enhanced genetic algorithm (EGA) is applied to solve the long-term transmission expansion planning (LTTEP) problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1) generation of an initial population using fast, efficient heuristic algorithms, (2) better implementation of the local improvement phase and (3) efficient solution of linear programming problems (LPs). Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem. Copyright © 2012 Luis A. Gallego et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a technique for performing analog design synthesis at circuit level providing feedback to the designer through the exploration of the Pareto frontier. A modified simulated annealing which is able to perform crossover with past anchor points when a local minimum is found which is used as the optimization algorithm on the initial synthesis procedure. After all specifications are met, the algorithm searches for the extreme points of the Pareto frontier in order to obtain a non-exhaustive exploration of the Pareto front. Finally, multi-objective particle swarm optimization is used to spread the results and to find a more accurate frontier. Piecewise linear functions are used as single-objective cost functions to produce a smooth and equal convergence of all measurements to the desired specifications during the composition of the aggregate objective function. To verify the presented technique two circuits were designed, which are: a Miller amplifier with 96 dB Voltage gain, 15.48 MHz unity gain frequency, slew rate of 19.2 V/mu s with a current supply of 385.15 mu A, and a complementary folded cascode with 104.25 dB Voltage gain, 18.15 MHz of unity gain frequency and a slew rate of 13.370 MV/mu s. These circuits were synthesized using a 0.35 mu m technology. The results show that the method provides a fast approach for good solutions using the modified SA and further good Pareto front exploration through its connection to the particle swarm optimization algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a new class of iterative schemes for accelerating the convergence of the EM algorithm, by exploiting the connection between fixed point iterations and extrapolation methods. First, we present a general formulation of one-step iterative schemes, which are obtained by cycling with the extrapolation methods. We, then square the one-step schemes to obtain the new class of methods, which we call SQUAREM. Squaring a one-step iterative scheme is simply applying it twice within each cycle of the extrapolation method. Here we focus on the first order or rank-one extrapolation methods for two reasons, (1) simplicity, and (2) computational efficiency. In particular, we study two first order extrapolation methods, the reduced rank extrapolation (RRE1) and minimal polynomial extrapolation (MPE1). The convergence of the new schemes, both one-step and squared, is non-monotonic with respect to the residual norm. The first order one-step and SQUAREM schemes are linearly convergent, like the EM algorithm but they have a faster rate of convergence. We demonstrate, through five different examples, the effectiveness of the first order SQUAREM schemes, SqRRE1 and SqMPE1, in accelerating the EM algorithm. The SQUAREM schemes are also shown to be vastly superior to their one-step counterparts, RRE1 and MPE1, in terms of computational efficiency. The proposed extrapolation schemes can fail due to the numerical problems of stagnation and near breakdown. We have developed a new hybrid iterative scheme that combines the RRE1 and MPE1 schemes in such a manner that it overcomes both stagnation and near breakdown. The squared first order hybrid scheme, SqHyb1, emerges as the iterative scheme of choice based on our numerical experiments. It combines the fast convergence of the SqMPE1, while avoiding near breakdowns, with the stability of SqRRE1, while avoiding stagnations. The SQUAREM methods can be incorporated very easily into an existing EM algorithm. They only require the basic EM step for their implementation and do not require any other auxiliary quantities such as the complete data log likelihood, and its gradient or hessian. They are an attractive option in problems with a very large number of parameters, and in problems where the statistical model is complex, the EM algorithm is slow and each EM step is computationally demanding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: This study investigated the role of a negative FAST in the diagnostic and therapeutic algorithm of multiply injured patients with liver or splenic lesions. METHODS: A retrospective analysis of 226 multiply injured patients with liver or splenic lesions treated at Bern University Hospital, Switzerland. RESULTS: FAST failed to detect free fluid or organ lesions in 45 of 226 patients with spleen or liver injuries (sensitivity 80.1%). Overall specificity was 99.5%. The positive and negative predictive values were 99.4% and 83.3%. The overall likelihood ratios for a positive and negative FAST were 160.2 and 0.2. Grade III-V organ lesions were detected more frequently than grade I and II lesions. Without the additional diagnostic accuracy of a CT scan, the mean ISS of the FAST-false-negative patients would be significantly underestimated and 7 previously unsuspected intra-abdominal injuries would have been missed. CONCLUSION: FAST is an expedient tool for the primary assessment of polytraumatized patients to rule out high grade intra-abdominal injuries. However, the low overall diagnostic sensitivity of FAST may lead to underestimated injury patterns and delayed complications may occur. Hence, in hemodynamically stable patients with abdominal trauma, an early CT scan should be considered and one must be aware of the potential shortcomings of a "negative FAST".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed microdosimetric characterization of the M. D. Anderson 42 MeV (p,Be) fast neutron beam was performed using the techniques of microdosimetry and a 1/2 inch diameter Rossi proportional counter. These measurements were performed at 5, 15, and 30 cm depths on the central axis, 3 cm inside, and 3 cm outside the field edge for 10 $\times$ 10 and 20 $\times$ 20 cm field sizes. Spectra were also measured at 5 and 15 cm depth on central axis for a 6 $\times$ 6 cm field size. Continuous slowing down approximation calculations were performed to model the nuclear processes that occur in the fast neutron beam. Irradiation of the CR-39 was performed using a tandem electrostatic accelerator for protons of 10, 6, and 3 MeV and alpha particles of 15, 10, and 7 MeV incident energy on target at angles of incidence from 0 to 85 degrees. The critical angle as well as track etch rate and normal incidence diameter versus linear energy transfer (LET) were obtained from these measurements. The bulk etch rate was also calculated from these measurements. Dose response of the material was studied, and the angular distribution of charged particles created by the fast neutron beam was measured with CR-39. The efficiency of CR-39 was calculated versus that of the Rossi chamber, and an algorithm was devised for derivation of LET spectra from the major and minor axis dimensions of the observed tracks. The CR-39 was irradiated in the same positions as the Rossi chamber, and the derived spectra were compared directly. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diamonds are known for both their beauty and their durability. Jefferson National Lab in Newport News, VA has found a way to utilize the diamond's strength to view the beauty of the inside of the atomic nucleus with the hopes of finding exotic forms of matter. By firing very fast electrons at a diamond sheet no thicker than a human hair, high energy particles of light known as photons are produced with a high degree of polarization that can illuminate the constituents of the nucleus known as quarks. The University of Connecticut Nuclear Physics group has responsibility for crafting these extremely thin, high quality diamond wafers. These wafers must be cut from larger stones that are about the size of a human finger, and then carefully machined down to the final thickness. The thinning of these diamonds is extremely challenging, as the diamond's greatest strength also becomes its greatest weakness. The Connecticut Nuclear Physics group has developed a novel technique to assist industrial partners in assessing the quality of the final machining steps, using a technique based on laser interferometry. The images of the diamond surface produced by the interferometer encode the thickness and shape of the diamond surface in a complex way that requires detailed analysis to extract. We have developed a novel software application to analyze these images based on the method of simulated annealing. Being able to image the surface of these diamonds without requiring costly X-ray diffraction measurements allows rapid feedback to the industrial partners as they refine their thinning techniques. Thus, by utilizing a material found to be beautiful by many, the beauty of nature can be brought more clearly into view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of fairly distributing the capacity of a network among a set of sessions has been widely studied. In this problem, each session connects via a single path a source and a destination, and its goal is to maximize its assigned transmission rate (i.e., its throughput). Since the links of the network have limited bandwidths, some criterion has to be defined to fairly distribute their capacity among the sessions. A popular criterion is max-min fairness that, in short, guarantees that each session i gets a rate λi such that no session s can increase λs without causing another session s' to end up with a rate λs/ <; λs. Many max-min fair algorithms have been proposed, both centralized and distributed. However, to our knowledge, all proposed distributed algorithms require control data being continuously transmitted to recompute the max-min fair rates when needed (because none of them has mechanisms to detect convergence to the max-min fair rates). In this paper we propose B-Neck, a distributed max-min fair algorithm that is also quiescent. This means that, in absence of changes (i.e., session arrivals or departures), once the max min rates have been computed, B-Neck stops generating network traffic. Quiescence is a key design concept of B-Neck, because B-Neck routers are capable of detecting and notifying changes in the convergence conditions of max-min fair rates. As far as we know, B-Neck is the first distributed max-min fair algorithm that does not require a continuous injection of control traffic to compute the rates. The correctness of B-Neck is formally proved, and extensive simulations are conducted. In them, it is shown that B-Neck converges relatively fast and behaves nicely in presence of sessions arriving and departing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes new improvements for BB-MaxClique (San Segundo et al. in Comput Oper Resour 38(2):571–581, 2011 ), a leading maximum clique algorithm which uses bit strings to efficiently compute basic operations during search by bit masking. Improvements include a recently described recoloring strategy in Tomita et al. (Proceedings of the 4th International Workshop on Algorithms and Computation. Lecture Notes in Computer Science, vol 5942. Springer, Berlin, pp 191–203, 2010 ), which is now integrated in the bit string framework, as well as different optimization strategies for fast bit scanning. Reported results over DIMACS and random graphs show that the new variants improve over previous BB-MaxClique for a vast majority of cases. It is also established that recoloring is mainly useful for graphs with high densities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method to analyze parabolic reflectors with arbitrary piecewise rim is presented in this communication. This kind of reflectors, when operating as collimators in compact range facilities, needs to be large in terms of wavelength. Their analysis is very inefficient, when it is carried out with fullwave/MoM techniques, and it is not very appropriate for designing with PO techniques. Also, fast GO formulations do not offer enough accuracy to reach performance results. The proposed algorithm is based on a GO-PWS hybrid scheme, using analytical as well as non-analytical formulations. On one side, an analytical treatment of the polygonal rim reflectors is carried out. On the other side, non-analytical calculi are based on efficient operations, such as M2 order 2-dimensional FFT. A combination of these two techniques in the algorithm ensures real ad-hoc design capabilities, reached through analysis speedup. The purpose of the algorithm is to obtain an optimal conformal serrated-edge reflector design through the analysis of the field quality within the quiet zone that it is able to generate in its forward half space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of the Internet has increased the need for scalable congestion control mechanisms in high speed networks. In this context, we propose a rate-based explicit congestion control mechanism with which the sources are provided with the rate at which they can transmit. These rates are computed with a distributed max-min fair algorithm, SLBN. The novelty of SLBN is that it combines two interesting features not simultaneously present in existing proposals: scalability and fast convergence to the max-min fair rates, even under high session churn. SLBN is scalable because routers only maintain a constant amount of state information (only three integer variables per link) and only incur a constant amount of computation per protocol packet, independently of the number of sessions that cross the router. Additionally, SLBN does not require processing any data packet, and it converges independently of sessions' RTT. Finally, by design, the protocol is conservative when assigning rates, even in the presence of high churn, which helps preventing link overshoots in transient periods. We claim that, with all these features, our mechanism is a good candidate to be used in real deployments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a novel fast random search clustering (RSC) algorithm for mixing matrix identification in multiple input multiple output (MIMO) linear blind inverse problems with sparse inputs. The proposed approach is based on the clustering of the observations around the directions given by the columns of the mixing matrix that occurs typically for sparse inputs. Exploiting this fact, the RSC algorithm proceeds by parameterizing the mixing matrix using hyperspherical coordinates, randomly selecting candidate basis vectors (i.e. clustering directions) from the observations, and accepting or rejecting them according to a binary hypothesis test based on the Neyman–Pearson criterion. The RSC algorithm is not tailored to any specific distribution for the sources, can deal with an arbitrary number of inputs and outputs (thus solving the difficult under-determined problem), and is applicable to both instantaneous and convolutive mixtures. Extensive simulations for synthetic and real data with different number of inputs and outputs, data size, sparsity factors of the inputs and signal to noise ratios confirm the good performance of the proposed approach under moderate/high signal to noise ratios. RESUMEN. Método de separación ciega de fuentes para señales dispersas basado en la identificación de la matriz de mezcla mediante técnicas de "clustering" aleatorio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning system and providing good accuracy in the dosage simulation.