465 resultados para Fürst
Resumo:
For the past 10 years, medical imaging techniques have been increasingly applied to forensic investigations. To obtain histological and toxicological information, tissue and liquid samples are required. In this article, we describe the development of a low-cost, secure, and reliable approach for a telematic add-on for remotely planning biopsies on the Virtobot robotic system. Data sets are encrypted and submitted over the Internet. A plugin for the OsiriX medical image viewer allows for remote planning of needle trajectories that are used for needle placement. The application of teleradiological methods to image-guided biopsy in the forensic setting has the potential to reduce costs and, in conjunction with a mobile computer tomographic scanner, allows for tissue sampling in a mass casualty situation involving nuclear, biological, or chemical agents, in a manner that minimizes the risk to involved staff.
Resumo:
T2 and T2* mapping are novel tools to assess cartilage quality.
Resumo:
OBJECTIVE: To report clinical evaluation of the clamp rod internal fixator 4.5/5.5 (CRIF 4.5/5.5) in bovine long-bone fracture repair. STUDY DESIGN: Retrospective study. ANIMALS: Cattle (n=22) with long-bone fractures. METHODS: Records for cattle with long-bone fractures repaired between 1999 and 2004 with CRIF 4.5/5.5 were reviewed. Quality of fracture repair, fracture healing, and clinical outcome were investigated by means of clinical examination, medical records, radiographs, and telephone questionnaire. RESULTS: Successful long-term outcome was achieved in 18 cattle (82%); 4 were euthanatized 2-14 days postoperatively because of fracture breakdowns. Two cattle had movement of clamps on the rod. Moderate to severe callus formation was evident in 11 cattle 6 months postoperatively. CONCLUSIONS: Movement of clamps on the rod was recognized as implant failure unique to the CRIF. This occurred in cattle with poor fracture stability because of an extensive cortical defect. The CRIF system may not be ideal to treat metacarpal/metatarsal fractures because its voluminous size makes skin closure difficult, thereby increasing the risk of postoperative infections. CLINICAL RELEVANCE: CRIF cannot be recommended for repair of complicated long-bone fractures in cattle.
Resumo:
Lameness in horses due to pain originating from the proximal metacarpal/metatarsal region remains a diagnostic challenge. In cases of obvious lameness the pain can be localised to this region by diagnostic anaesthesia. Because a variety of disorders can cause lameness in this region different imaging modalities including radiography, ultrasonography and scintigraphy should be used to arrive at an accurate diagnosis. Even though a precise anatomic-pathologic diagnosis can still be an enigma, because not only bone and joints, but also soft tissue structures including the proximal suspensory ligament, its origin at the proximal metacarpus/ metatarsus, its fascia, the superficial fascia, as well as the intermetacarpal/metatarsal ligaments, the accessory ligament of the deep digital flexor tendon and both digital flexor tendons may be involved. Magnet resonance tomography (MRT) shows a high diagnostic sensitivity in imaging soft tissue structures and bone. In horses MRT is still at the beginning. The MRT appearance of the proximal metacarpal/metatarsal region has not yet been evaluated in detail and there are only few anatomic studies of the origin of the suspensory ligament in horses. The first experiences showed, that more gross and histologic examinations are necessary to fully interpret MRT-images and to differentiate pathologic alterations from clinically not relevant variations.
Resumo:
Background: The information on bacterial colonization immediately after dental implant insertion is limited. Aims: (1) to assess the early colonization on titanium implants immediately post placement through the first12 post-surgical weeks , (2) to compare the microflora at interproximal subgingival implant and adjacent tooth sites. Material and Methods: Subgingival plaque samples from implant and neighbouring teeth were studied by checkerboard DNA-DNA hybridization before, 30 min. after implant placement , 1 week, 2 weeks, 4 weeks, 8 weeks, and 12 weerks after surgery. Results: Comparing bacterial loads at implant sites between 30 min. after placement with one week data showed that only the levels of V.parvula (p<0.05) differed with higher loads at week 1. Week 12 data demonstrated significantly higher bacterial loads for 15/40 species at tooth sites compared to pre-surgery (p < values varying between 0.05 and 0.01). Between immediately post-surgery and week 12 at implant sites 29/40 species were more commonly found at week 12. Included among these bacteria at implant sites were P.gingivalis (p< 0.05), T.forsythia, (p < 0.01), and T denticola (p<0.001). Immediately post-surgery 5.9% of implants, and 26.2% of teeth and at week 12, 15.0 % of implants, and 39.1% of teeth harbored S.aureus. Comparing tooth and implant sites, significantly higher bacterial loads were found at tooth sites for 27/40 species at the 30 minutes after placement interval. This difference increased to 35/40 species at week 12. Conclusions: The colonization of bacteria occurs within 30 minutes. Colonization patterns differed between implants and tooth surfaces.
Resumo:
BACKGROUND: Information on bacterial colonization immediately after dental implant insertion is limited. AIMS: (1) To assess the early colonization on titanium implants immediately after placement and throughout the first 12 post-surgical weeks, (2) to compare the microbiota at interproximal subgingival implant and adjacent tooth sites. MATERIAL AND METHODS: Subgingival plaque samples from implant and neighbouring teeth were studied by checkerboard DNA-DNA hybridization before surgery, 30 min after implant placement, and 1, 2, 4, 8, and 12 weeks after surgery. RESULTS: Comparing bacterial loads at implant sites between 30 min after placement with 1-week data showed that only the levels of Veillonella parvula (P<0.05) differed with higher loads at week 1 post-surgically. Week 12 data demonstrated significantly higher bacterial loads for 15/40 species at tooth sites compared with pre-surgery (P-values varying between 0.05 and 0.01). Between the period immediately after surgery and 12 weeks at implant sites, 29/40 species was more commonly found at 12 weeks. Included among these bacteria at implant sites were Porphyromonas gingivalis (P<0.05), Tannerella forsythia, (P<0.01), and Treponema denticola (P<0.001). Immediately post-surgery 5.9% of implants, and 26.2% of teeth, and at week 12, 15% of implants, and 39.1% of teeth harbored Staphylococcus aureus. Comparing tooth and implant sites, significantly higher bacterial loads were found at tooth sites for 27/40 species after 30 min following implant placement. This difference increased to 35/40 species at 12 weeks post-surgically. CONCLUSIONS: Bacterial colonization occurred within 30 min after implant placement. Early colonization patterns differed between implant and tooth surfaces.
Resumo:
AIMS: (i) To assess the pattern of early bacterial colonization on titanium oral implants after installation, at 12 weeks and at 12 months, (ii) to compare the microbiota at submucosal implant sites and adjacent subgingival tooth sites and (iii) to assess whether or not early colonization was predictive of 12-month colonization patterns. MATERIAL AND METHODS: Submucosal/subgingival plaque samples from 17 titanium oral implants and adjacent teeth were analyzed by checkerboard DNA-DNA hybridization 30 min, 12 weeks and 12 months after implant installation. RESULTS: At 12 months, none of the inserted implants had been lost or presented with signs of peri-implantitis. The distribution of sites at implants and teeth with bleeding on probing varied between 2% and 11%. Probing pocket depths < or =3 mm were found at 75% of implant sites. At 12 months, the sum of the bacterial counts of 40 species was statistically significantly higher at tooth compared with implant sites (mean difference: 34.4 x 10(5), 95% confidence interval -0.4 to 69.4, P<0.05). At 12 months, higher individual bacterial counts at tooth sites were found for 7/40 species compared with implant sites. Detection or lack of detection of Staphylococcus aureus at implant sites at 12 weeks resulted in the highest positive (e.g. 80%) and negative (e.g. 90%) predictive values, respectively. Between 12 weeks and 12 months, the prevalence of Tannerella forsythia increased statistically significantly at implant sites (P<0.05). Lack of detection of Porphyromonas gingivalis at 12 weeks yielded a negative predictive value of 93.1% of this microorganism being undetectable at implant sites at 12 months. CONCLUSIONS: Within the limits of this study, the findings showed (i) a few differences in the prevalence of bacterial species between implant and adjacent tooth sites at 12 months and (ii) high positive and negative predictive values for selected bacterial species.
Resumo:
versehen und hrsg. von Julius Fürst
Resumo:
von Julius Fürst.
Resumo:
von J. Fürst