824 resultados para Evolution of engineering education research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecophysiological research in Australia has focussed, at different times, on the fundamental similarities in function between all plant species, and on the peculiarity of Australian species with respect to their survival in stressful environments. Early work on plant water relations emphasised the differences between species, and indicated that diverse structural and functional attributes occurred in species from the same water-limited environment. Most recent research has emphasised processes that optimise rates of carbon dioxide exchange, but the understanding of functioning in plants with different morphological arrangements is incomplete. Variation in functions between individual plants and geographic populations in wild species has been examined to a lesser extent. The great variety within and between populations of wild plant species warrants further study for both understanding and more effective management of this biological resource.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The field of environmental engineering is developing as a result of changing environmental requirements. In response, environmental engineering education (E3) needs to ensure that it provides students with the necessary tools to address these challenges. In this paper the current status and future development of E3 is evaluated based on a questionnaire sent to universities and potential employers of E3 graduates. With increasing demands on environmental quality, the complexity of environmental engineering problems to be solved can be expected to increase. To find solutions environmental engineers will need to work in interdisciplinary teams. Based on the questionnaire there was a broad agreement that the best way to prepare students for these future challenges is to provide them with a fundamental education in basic sciences and related engineering fields. Many exciting developments in the environmental engineering profession will be located at the interface between engineering, science, and society. Aspects of all three areas need to be included in E3 and the student needs to be exposed to the tensions associated with linking the three.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a critical comparison of major changes in engineering education in both Australia and Europe. European engineering programs are currently being reshaped by the Bologna process, representing a move towards quality assurance in higher education and the mutual recognition of degrees among universities across Europe. Engineering education in Australia underwent a transformation after the 1996 review of engineering education1. The paper discusses the recent European developments in order to give up-to-date information on this fast changing and sometimes obscure process. The comparison draws on the implications of the Bologna Process on the German engineering education system as an example. It concludes with issues of particular interest, which can help to inform the international discussion on how to meet today’s challenges for engineering education. These issues include ways of achieving diversityamong engineering programs, means of enabling student and staff mobility, and the preparation of engineering students for professional practic e through engineering education. As a result, the benefits of outcomes based approaches in education are discussed. This leads to an outlook for further research into the broader attributes required by future professional engineers. © 2005, Australasian Association for Engineering Education

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Stereotypically perceived to be an ‘all male’ occupation, engineering has for many years failed to attract high numbers of young women [1,2]. The reasons for this are varied, but tend to focus on misconceptions of the profession as being more suitable for men. In seeking to investigate this issue a participatory research approach was adopted [3] in which two 17 year-old female high school students interviewed twenty high school girls. Questions focused on the girls’ perceptions of engineering as a study and career choice. The findings were recorded and analysed using qualitative techniques. The study identified three distinctive ‘influences’ as being pivotal to girls’ perceptions of engineering; pedagogical; social; and, familial. Pedagogical Influences: Pedagogical influences tended to focus on science and maths. In discussing science, the majority of the girls identified biology and chemistry as more ‘realistic’ whilst physics was perceived to more suitable for boys. The personality of the teacher, and how a particular subject is taught, proved to be important influences shaping opinions. Social Influences: Societal influences were reflected in the girls’ career choice with the majority considering medical or social science related careers. Although all of the girls believed engineering to be ‘male dominated’, none believed that a woman should not be engineer. Familial Influences: Parental influence was identified as key to career and study choice; only two of the girls had discussed engineering with their parents of which only one was being actively encouraged to pursue a career in engineering. Discussion: The study found that one of the most significant barriers to engineering is a lack of awareness. Engineering did not register in the girls’ lives, it was not taught in school, and only one had met a female engineer. Building on the study findings, the discussion considers how engineering could be made more attractive to young women. Whilst misconceptions about what an engineer is need to be addressed, other more fundamental pedagogical barriers, such as the need to make physics more attractive to girls and the need to develop the curriculum so as to meet the learning needs of 21st Century students are discussed. By drawing attention to the issues around gender and the barriers to engineering, this paper contributes to current debates in this area – in doing so it provides food for thought about policy and practice in engineering and engineering education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the paper, methodological aspects of nowadays high engineering education are considered. Thoughts generalizing author’s long-term experience are set forth. Recommendations on the improvement of pedagogical process and training system for young teachers are given.