986 resultados para Estimated parameters
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Intense selection among broilers, especially for performance and carcass traits, currently favors locomotion problems and bone resistance. Conducting studies relating to development and growth of bone tissue in broilers is necessary to minimize losses. Thus, genetic parameters were estimated for a broiler population's phenotypic traits such as BW at 42 d of age (BW42), chilled femur weight (CFW) and its yield (CFY), and femur measurements: calcium, DM, magnesium, phosphorus, and zinc content; breaking strength; rigidity; length; and thickness. Variance components were estimated through multitrait analyses using the restricted maximum likelihood method. The model included a fixed group effect (sex and hatch) and additive and residual genetic random effects. The heritability estimates we obtained ranged from 0.10 ± 0.05 to 0.50 ± 0.08 for chilled femur yield and BW42, respectively, and indicated that the traits can respond to the selection process, except for CFY, which presented low-magnitude heritability coefficients. Genetic correlation estimates between breaking strength, rigidity, and traits related to mineral content indicated that selection that aims to improve the breaking strength resistance of the femur is highly correlated with mineral content. Given the genetic correlation estimates between BW42 and minerals, it is suggested that in this population, selection for BW42 can be performed with greater intensity without affecting femoral integrity.
Resumo:
A demographic model is developed based on interbirth intervals and is applied to estimate the population growth rate of humpback whales (Megaptera novaeangliae) in the Gulf of Maine. Fecundity rates in this model are based on the probabilities of giving birth at time t after a previous birth and on the probabilities of giving birth first at age x. Maximum likelihood methods are used to estimate these probabilities using sighting data collected for individually identified whales. Female survival rates are estimated from these same sighting data using a modified Jolly–Seber method. The youngest age at first parturition is 5 yr, the estimated mean birth interval is 2.38 yr (SE = 0.10 yr), the estimated noncalf survival rate is 0.960 (SE = 0.008), and the estimated calf survival rate is 0.875 (SE = 0.047). The population growth rate (l) is estimated to be 1.065; its standard error is estimated as 0.012 using a Monte Carlo approach, which simulated sampling from a hypothetical population of whales. The simulation is also used to investigate the bias in estimating birth intervals by previous methods. The approach developed here is applicable to studies of other populations for which individual interbirth intervals can be measured.
Resumo:
The growth parameters and the mortality rates of the Scomber japonicus peruanus (Chub mackerel) were studied based on monthly data of frequency of fork length classes obtained from commercial landings off the Peruvian coast from 1996 to 1998. The asymptotic body length and growth rate values obtained by the ELEFAN I (Electronic Length Frequency Analysis) ranged from 40.20 cm to 42.20 cm and from 0.38 to 0.39, respectively. The oscillation amplitude was 0.60; the Winter point values varied from 0.50 to 0.60 and the performance index from 2.79 to 2.84. The total mortality rate of the Chub mackerel obtained by the linearized catch curve oscillated between 1.68 and 3.35. The rate of fishing mortality varied from 1.16 to 2.78 and the exploitation rate from 0.68 to 0.84. The annual rate of natural mortality estimated by the Pauly`s method ranged from 0.52 to 0.53. The results obtained allow us to conclude that the longevity of the Chub mackerel was slightly over seven years.
Resumo:
Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112: 225-236, 2012. First published September 29, 2011; doi: 10.1152/japplphysiol.01090.2010.-The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.
Resumo:
We have used kinematic models in two Italian regions to reproduce surface interseismic velocities obtained from InSAR and GPS measurements. We have considered a Block modeling, BM, approach to evaluate which fault system is actively accommodating the occurring deformation in both considered areas. We have performed a study for the Umbria-Marche Apennines, obtaining that the tectonic extension observed by GPS measurements is explained by the active contribution of at least two fault systems, one of which is the Alto Tiberina fault, ATF. We have estimated also the interseismic coupling distribution for the ATF using a 3D surface and the result shows an interesting correlation between the microseismicity and the uncoupled fault portions. The second area analyzed concerns the Gargano promontory for which we have used jointly the available InSAR and GPS velocities. Firstly we have attached the two datasets to the same terrestrial reference frame and then using a simple dislocation approach, we have estimated the best fault parameters reproducing the available data, providing a solution corresponding to the Mattinata fault. Subsequently we have considered within a BM analysis both GPS and InSAR datasets in order to evaluate if the Mattinata fault may accommodate the deformation occurring in the central Adriatic due to the relative motion between the North-Adriatic and South-Adriatic plates. We obtain that the deformation occurring in that region should be accommodated by more that one fault system, that is however difficult to detect since the poor coverage of geodetic measurement offshore of the Gargano promontory. Finally we have performed also the estimate of the interseismic coupling distribution for the Mattinata fault, obtaining a shallow coupling pattern. Both of coupling distributions found using the BM approach have been tested by means of resolution checkerboard tests and they demonstrate that the coupling patterns depend on the geodetic data positions.
Resumo:
BACKGROUND: Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. MATERIALS AND METHODS: Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. RESULTS: After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. CONCLUSIONS: In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP.
Resumo:
Low back pain is associated with plasticity changes and central hypersensitivity in a subset of patients. We performed a case-control study to explore the discriminative ability of different quantitative sensory tests in distinguishing between 40 cases with chronic low back pain and 300 pain-free controls, and to rank these tests according to the extent of their association with chronic pain. Gender, age, height, weight, body mass index, and psychological measures were recorded as potential confounders. We used 26 quantitative sensory tests, including different modalities of pressure, heat, cold, and electrical stimulation. As measures of discrimination, we estimated receiver operating characteristics (ROC) and likelihood ratios. Six tests seemed useful (in order of their discriminative ability): (1) pressure pain detection threshold at the site of most severe pain (fitted area under the ROC, 0.87), (2) single electrical stimulation pain detection threshold (0.87), (3) single electrical stimulation reflex threshold (0.83), (4) pressure pain tolerance threshold at the site of most severe pain (0.81), (5) pressure pain detection threshold at suprascapular region (0.80), and (6) temporal summation pain threshold (0.80). Pressure and electrical pain modalities seemed most promising and may be used for diagnosis of pain hypersensitivity and potentially for identifying individuals at risk of developing chronic low back pain over time.
Resumo:
Time series of geocenter coordinates were determined with data of two global navigation satellite systems (GNSSs), namely the U.S. GPS (Global Positioning System) and the Russian GLONASS (Global’naya Nawigatsionnaya Sputnikowaya Sistema). The data was recorded in the years 2008–2011 by a global network of 92 permanently observing GPS/GLONASS receivers. Two types of daily solutions were generated independently for each GNSS, one including the estimation of geocenter coordinates and one without these parameters. A fair agreement for GPS and GLONASS was found in the geocenter x- and y-coordinate series. Our tests, however, clearly reveal artifacts in the z-component determined with the GLONASS data. Large periodic excursions in the GLONASS geocenter z-coordinates of about 40 cm peak-to-peak are related to the maximum elevation angles of the Sun above/below the orbital planes of the satellite system and thus have a period of about 4 months (third of a year). A detailed analysis revealed that the artifacts are almost uniquely governed by the differences of the estimates of direct solar radiation pressure (SRP) in the two solution series (with and without geocenter estimation). A simple formula is derived, describing the relation between the geocenter z-coordinate and the corresponding parameter of the SRP. The effect can be explained by first-order perturbation theory of celestial mechanics. The theory also predicts a heavy impact on the GNSS-derived geocenter if once-per-revolution SRP parameters are estimated in the direction of the satellite’s solar panel axis. Specific experiments using GPS observations revealed that this is indeed the case. Although the main focus of this article is on GNSS, the theory developed is applicable to all satellite observing techniques. We applied the theory to satellite laser ranging (SLR) solutions using LAGEOS. It turns out that the correlation between geocenter and SRP parameters is not a critical issue for the SLR solutions. The reasons are threefold: The direct SRP is about a factor of 30–40 smaller for typical geodetic SLR satellites than for GNSS satellites, allowing it in most cases to not solve for SRP parameters (ruling out the correlation between these parameters and the geocenter coordinates); the orbital arc length of 7 days (which is typically used in SLR analysis) contains more than 50 revolutions of the LAGEOS satellites as compared to about two revolutions of GNSS satellites for the daily arcs used in GNSS analysis; the orbit geometry is not as critical for LAGEOS as for GNSS satellites, because the elevation angle of the Sun w.r.t. the orbital plane is usually significantly changing over 7 days.
Resumo:
Displacements of the Earth’s surface caused by tidal and non-tidal loading forces are relevant in high-precision space geodesy. Some of the corrections are recommended by the international scientific community to be applied at the observation level, e.g., ocean tidal loading (OTL) and atmospheric tidal loading (ATL). Non-tidal displacement corrections are in general recommended not to be applied in the products of the International Earth Rotation and Reference Systems Service, in particular atmospheric non-tidal loading (ANTL), oceanic and hydrological non-tidal corrections. We assess and compare the impact of OTL, ATL and ANTL on SLR-derived parameters by reprocessing 12 years of SLR data considering and ignoring individual corrections. We show that loading displacements have an influence not only on station long-term stability, but also on geocenter coordinates, Earth Rotation Parameters, and satellite orbits. Applying the loading corrections reduces the amplitudes of annual signals in the time series of geocenter and station coordinates. The general improvement of the SLR station 3D coordinate repeatability when applying OTL, ATL and ANTL corrections are 19.5 %, 0.2 % and 3.3 % respectively, w.r.t. the solutions without loading corrections. ANTL corrections play a crucial role in the combination of optical (SLR) and microwave (GNSS, VLBI, DORIS) space geodetic observation techniques, because of the so-called Blue-Sky effect: SLR measurements can be carried out only under cloudless sky conditions—typically during high air pressure conditions, when the Earth’s crust is deformed, whereas microwave observations are weather-independent. Thus, applying the loading corrections at the observation level improves SLR-derived products as well as the consistency with microwave-based results. We assess the Blue-Sky effect on SLR stations and the consistency improvement between GNSS and SLR solutions when ANTL corrections are included. The omission of ANTL corrections may lead to inconsistencies between SLR and GNSS solutions of up to 2.5 mm for inland stations. As a result, the estimated GNSS–SLR coordinate differences correspond better to the local ties at the co-located stations when applying ANTL corrections.
Resumo:
OBJECTIVE Reliable tools to predict long-term outcome among patients with well compensated advanced liver disease due to chronic HCV infection are lacking. DESIGN Risk scores for mortality and for cirrhosis-related complications were constructed with Cox regression analysis in a derivation cohort and evaluated in a validation cohort, both including patients with chronic HCV infection and advanced fibrosis. RESULTS In the derivation cohort, 100/405 patients died during a median 8.1 (IQR 5.7-11.1) years of follow-up. Multivariate Cox analyses showed age (HR=1.06, 95% CI 1.04 to 1.09, p<0.001), male sex (HR=1.91, 95% CI 1.10 to 3.29, p=0.021), platelet count (HR=0.91, 95% CI 0.87 to 0.95, p<0.001) and log10 aspartate aminotransferase/alanine aminotransferase ratio (HR=1.30, 95% CI 1.12 to 1.51, p=0.001) were independently associated with mortality (C statistic=0.78, 95% CI 0.72 to 0.83). In the validation cohort, 58/296 patients with cirrhosis died during a median of 6.6 (IQR 4.4-9.0) years. Among patients with estimated 5-year mortality risks <5%, 5-10% and >10%, the observed 5-year mortality rates in the derivation cohort and validation cohort were 0.9% (95% CI 0.0 to 2.7) and 2.6% (95% CI 0.0 to 6.1), 8.1% (95% CI 1.8 to 14.4) and 8.0% (95% CI 1.3 to 14.7), 21.8% (95% CI 13.2 to 30.4) and 20.9% (95% CI 13.6 to 28.1), respectively (C statistic in validation cohort = 0.76, 95% CI 0.69 to 0.83). The risk score for cirrhosis-related complications also incorporated HCV genotype (C statistic = 0.80, 95% CI 0.76 to 0.83 in the derivation cohort; and 0.74, 95% CI 0.68 to 0.79 in the validation cohort). CONCLUSIONS Prognosis of patients with chronic HCV infection and compensated advanced liver disease can be accurately assessed with risk scores including readily available objective clinical parameters.
Resumo:
We present the results from a simultaneous estimation of the gravity field, Earth rotation parameters, and station coordinates from combined SLR solutions incorporating up to nine geodetic satellites: LAGEOS-1/2, Starlette, Stella, AJISAI, Beacon-C, Lares, Blits and LARES. These solutions cover all three pillars of satellite geodesy and ensure full consistency between the Earth rotation parameters, gravity field coefficients, and geometry-related parameters. We address benefits emerging from such an approach and discuss particular aspects and limitations of the gravity field recovery using SLR data. The current accuracy of SLR-derived polar motion, by the means of WRMS w.r.t. IERS-08-C04 series, is at a level of 118-149 μas, which corresponds to 4 to 5 mm on the Earth’s surface. The WRMS of SLR-derived Length-of-Day, when the gravity field parameters are simultaneously estimated, is 56 μs/day, corresponding to about 26 mm on the ground, and the mean bias of SLR-derived Length-of-Day is 6.3 μs/day, corresponding to 3 mm.
Resumo:
The first objective of this study was to determine normative digital X-ray radiogrammetry (DXR) values, based on original digital images, in a pediatric population (aged 6-18 years). The second aim was to compare these reference data with patients suffering from distal radius fractures, whereas both cohorts originated from the same geographical region and were evaluated using the same technical parameters as well as inclusion and exclusion criteria. DXR-BMD and DXR-MCI of the metacarpal bones II-IV were assessed on standardized digital hand radiographs, without printing or scanning procedures. DXR parameters were estimated separately by gender and among six age groups; values in the fracture group were compared to age- and gender-matched normative data using Student's t tests and Z scores. In the reference cohort (150 boys, 138 girls), gender differences were found in bone mineral density (DXR-BMD), with higher values for girls from 11 to 14 years and for boys from 15 to 18 years (p < 0.05). Girls had higher normative metacarpal index (DXR-MCI) values than boys, with significant differences at 11-14 years (p < 0.05). In the case-control investigation, the fracture group (95 boys, 69 girls) presented lower DXR-BMD at 15-18 years in boys and 13-16 years in girls vs. the reference cohort (p < 0.05); DXR-MCI was lower at 11-18 years in boys and 11-16 years in girls (p < 0.05). Mean Z scores in the fracture group for DXR-BMD were -0.42 (boys) and -0.46 (girls), and for DXR-MCI were -0.51 (boys) and -0.53 (girls). These findings indicate that the fully digital DXR technique can be accurately applied in pediatric populations ≥ 6 years of age. The lower DXR-BMD and DXR-MCI values in the fracture group suggest promising early identification of individuals with increased fracture risk, without the need for additional radiation exposure, enabling the initiation of prevention strategies to possibly reduce the incidence of osteoporosis later in life.
Resumo:
The growth patterns of weight from birth through the first twelve months of life among rural Taiwanese infants were investigated with the following objectives: (i) compare each of the parameters of the Count model estimated for infants who were nutritionally at risk with those for a reference population from the United States; and (ii) within the Taiwanese infants, account for the variance in the growth patterns in the first and second six months of life on the basis of selected ecological factors.^ The significance between group differences were observed in the patterns of the weight growth in both linear growth and in the timing and the direction of velocity changes. A significant decline in growth velocity was observed among Taiwanese infants at about the fourth month of life. The decline is in keeping with a recent proposal made by J. C. Waterlow regarding the timing of change in growth velocity among nutritionally at risk populations in developing countries. The growth course of a nutritionally at risk infant during the first three months is apparently protected by the nurturance of the mother and innate biological properties of the infant.^ A highly significant portion of the growth variance in the second six months of life was accounted for by exogenous factors and biological factors related to the infant. Conversely, none of the growth variance in the first six months of life was accounted for by predictor variables. The most potent determinant of growth in the second six months of life was seasonality which represents a multiple environmental event.^ The model parameters estimated from the Count model represent different aspect of physical growth; yet the correlation coefficients between parameters b and c are high (r > .80). Clearly, the biological interpretation of the model parameters requires analysis of the whole function in the specific context of a given age period. ^
Resumo:
Population dynamics of abundance and biomass were studied and specific production of population of ctenophore Mnemiopsis leidyi was estimated in the Sevastopol Bay from January 1995 to March 1996. The ctenophores achieved maximum abundance and biomass in July during period of intensive reproduction. Young specimens (<5 mm) contributed during that period as much as 50-87% to total abundance of population. Annually averaged daily specific growth rate was 0.039. Growth, food consumption, and rate of filtration were measured in a laboratory under two concentrations of food (Acartia clausi and Moina micrura: 60 and 100 specimens per liter, 0.35 and 0.60 mg wet weight/l). Both concentrations sustained growth of animals with dry weight less than 20 mg. However these concentrations were insufficient to sustain growth of larger ctenophores. Specific growth rate of the ctenophores with dry weight <20 mg under favorable food conditions was 0.20-0.30 l/day. Specific growth rate of the ctenophores in the Sevastopol Bay never exceeded 0.093 l/day, mean biomass of fodder zooplankton in the bay being 90 mg/m**3 in terms of wet weight. Hence a conclusion was made that population of M. leidyi in the bay was limited by lack of food.