962 resultados para Essex Junior (Sloop)
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A topographical map of Essex County, Massachusetts : based upon the trigonometrical survey of the state the details, from actual surveys under the direction of H.F. Walling, superintendent of state map ; engd. by Geo. Worley & Wm. Bracher. It was published by Smith and Morley in 1856. Scale [ca. 1:50,000]. This layer is image 2 of 4 total images, representing the southeast portion of the four sheet source map.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, public buildings, schools, churches, cemeteries, industry locations (e.g. mills, factories, mines, etc.), private buildings with names of property owners, town and school district boundaries, and more. Relief shown by hachures. It includes many cadastral insets of individual county towns and villages. It also includes illustrations, business directories, and tables of statistics and distances.This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A topographical map of Essex County, Massachusetts : based upon the trigonometrical survey of the state the details, from actual surveys under the direction of H.F. Walling, superintendent of state map ; engd. by Geo. Worley & Wm. Bracher. It was published by Smith and Morley in 1856. Scale [ca. 1:50,000]. This layer is image 4 of 4 total images, representing the northwest portion of the four sheet source map.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, public buildings, schools, churches, cemeteries, industry locations (e.g. mills, factories, mines, etc.), private buildings with names of property owners, town and school district boundaries, and more. Relief shown by hachures. It includes many cadastral insets of individual county towns and villages. It also includes illustrations, business directories, and tables of statistics and distances.This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: The county of Essex, made by John G. Hales ; engraved by J.V.N. Throop. It was published June 19th, 1825. Scale [ca. 1:90,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, drainage, public buildings, churches, industry locations (e.g. mills, factories, mines, etc.), individual dwellings, town and county boundaries and more. Relief is shown by hachures. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
Previous studies have shown medical students in Germany to have little interest in research while at the same time there is a lack of physician scientists. This study’s aim is to investigate factors influencing publication productivity of physicians during and after finishing their medical doctorate. We conducted a PubMed search for physicians having received their doctoral degree at Ludwig-Maxmilians-University Munich Faculty of Medicine between 2011 and 2013 (N = 924) and identified the appropriate impact factor (IF) for each journal the participants had published in. Gender, age, final grade of the doctorate, participation in a structured doctoral study program and joint publication activities between graduate and academic supervisor were defined as factors. For analyses we used nonparametric procedures. Men show significantly more publications than women. Before their doctoral graduation men publish 1.98 (SD ± 3.64) articles on average, women 1.15 (±2.67) (p < 0.0001, d = 0.27). After completion of the doctorate (up to 06/2015), 40 % of men still publish, while only 24.3 % of women (p < 0.0001, φ = 0.17) continue to publish. No differences were found concerning the value of IFs. Similar results were found regarding the variable ‘participation in a structured doctoral study program’. Until doctoral graduation, program participants publish 2.82 (±5.41) articles, whereas participants doing their doctorate individually only publish 1.39 (±2.87) articles (p < 0.0001, d = 0.46). These differences persist in publication activities after graduation (45.5 vs. 29.7 %, p = 0.008, φ = 0.09). A structured doctorate seems to have positive influence on IFs (4.33 ± 2.91 vs. 3.37 ± 2.82, p = 0.006, d = 0.34). Further significant results concern the variables ‘final grade’ and ‘age’: An early doctoral graduation and an excellent or very good grade for the doctoral thesis positively influence publication productivity. Finally, joint publication activities between the graduate and his/her academic supervisor result in significantly higher IFs (3.64 ± 3.03 vs. 2.84 ± 2.25, p = 0.007, d = 0.28). The study’s results support the assumption about women’s underrepresentation in science as well as the relevance of structured doctoral study programs for preparing and recruiting young academics in medicine for scientific careers. Promoting women and further development of structured doctoral study programs are highly recommended.
Resumo:
Mode of access: Internet.
Resumo:
[From Jasper Cropsey Sketch book, 1855-1856]
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.