986 resultados para Errors codes
Resumo:
Adapting the power of secondary users (SUs) while adhering to constraints on the interference caused to primary receivers (PRxs) is a critical issue in underlay cognitive radio (CR). This adaptation is driven by the interference and transmit power constraints imposed on the secondary transmitter (STx). Its performance also depends on the quality of channel state information (CSI) available at the STx of the links from the STx to the secondary receiver and to the PRxs. For a system in which an STx is subject to an average interference constraint or an interference outage probability constraint at each of the PRxs, we derive novel symbol error probability (SEP)-optimal, practically motivated binary transmit power control policies. As a reference, we also present the corresponding SEP-optimal continuous transmit power control policies for one PRx. We then analyze the robustness of the optimal policies when the STx knows noisy channel estimates of the links between the SU and the PRxs. Altogether, our work develops a holistic understanding of the critical role played by different transmit and interference constraints in driving power control in underlay CR and the impact of CSI on its performance.
Resumo:
In this paper, we consider the security of exact-repair regenerating codes operating at the minimum-storage-regenerating (MSR) point. The security requirement (introduced in Shah et. al.) is that no information about the stored data file must be leaked in the presence of an eavesdropper who has access to the contents of l(1) nodes as well as all the repair traffic entering a second disjoint set of l(2) nodes. We derive an upper bound on the size of a data file that can be securely stored that holds whenever l(2) <= d - k +1. This upper bound proves the optimality of the product-matrix-based construction of secure MSR regenerating codes by Shah et. al.
Resumo:
In this paper, we study codes with locality that can recover from two erasures via a sequence of two local, parity-check computations. By a local parity-check computation, we mean recovery via a single parity-check equation associated with small Hamming weight. Earlier approaches considered recovery in parallel; the sequential approach allows us to potentially construct codes with improved minimum distance. These codes, which we refer to as locally 2-reconstructible codes, are a natural generalization along one direction, of codes with all-symbol locality introduced by Gopalan et al, in which recovery from a single erasure is considered. By studying the generalized Hamming weights of the dual code, we derive upper bounds on the minimum distance of locally 2-reconstructible codes and provide constructions for a family of codes based on Turan graphs, that are optimal with respect to this bound. The minimum distance bound derived here is universal in the sense that no code which permits all-symbol local recovery from 2 erasures can have larger minimum distance regardless of approach adopted. Our approach also leads to a new bound on the minimum distance of codes with all-symbol locality for the single-erasure case.
Resumo:
While the tradeoff between the amount of data stored and the repair bandwidth of an (n, k, d) regenerating code has been characterized under functional repair (FR), the case of exact repair (ER) remains unresolved. It is known that there do not exist ER codes which lie on the FR tradeoff at most of the points. The question as to whether one can asymptotically approach the FR tradeoff was settled recently by Tian who showed that in the (4, 3, 3) case, the ER region is bounded away from the FR region. The FR tradeoff serves as a trivial outer bound on the ER tradeoff. In this paper, we extend Tian's results by establishing an improved outer bound on the ER tradeoff which shows that the ER region is bounded away from the FR region, for any (n; k; d). Our approach is analytical and builds upon the framework introduced earlier by Shah et. al. Interestingly, a recently-constructed, layered regenerating code is shown to achieve a point on this outer bound for the (5, 4, 4) case. This represents the first-known instance of an optimal ER code that does not correspond to a point on the FR tradeoff.
Resumo:
A new class of exact-repair regenerating codes is constructed by stitching together shorter erasure correction codes, where the stitching pattern can be viewed as block designs. The proposed codes have the help-by-transfer property where the helper nodes simply transfer part of the stored data directly, without performing any computation. This embedded error correction structure makes the decoding process straightforward, and in some cases the complexity is very low. We show that this construction is able to achieve performance better than space-sharing between the minimum storage regenerating codes and the minimum repair-bandwidth regenerating codes, and it is the first class of codes to achieve this performance. In fact, it is shown that the proposed construction can achieve a nontrivial point on the optimal functional-repair tradeoff, and it is asymptotically optimal at high rate, i.e., it asymptotically approaches the minimum storage and the minimum repair-bandwidth simultaneously.
Resumo:
A recent approach for the construction of constant dimension subspace codes, designed for error correction in random networks, is to consider the codes as orbits of suitable subgroups of the general linear group. In particular, a cyclic orbit code is the orbit of a cyclic subgroup. Hence a possible method to construct large cyclic orbit codes with a given minimum subspace distance is to select a subspace such that the orbit of the Singer subgroup satisfies the distance constraint. In this paper we propose a method where some basic properties of difference sets are employed to select such a subspace, thereby providing a systematic way of constructing cyclic orbit codes with specified parameters. We also present an explicit example of such a construction.
Resumo:
The set of all subspaces of F-q(n) is denoted by P-q(n). The subspace distance d(S)(X, Y) = dim(X) + dim(Y)-2dim(X boolean AND Y) defined on P-q(n) turns it into a natural coding space for error correction in random network coding. A subset of P-q(n) is called a code and the subspaces that belong to the code are called codewords. Motivated by classical coding theory, a linear coding structure can be imposed on a subset of P-q(n). Braun et al. conjectured that the largest cardinality of a linear code, that contains F-q(n), is 2(n). In this paper, we prove this conjecture and characterize the maximal linear codes that contain F-q(n).
Resumo:
In this paper, sliding mode control-based impact time guidance laws are proposed. Even for large heading angle errors and negative initial closing speeds, the desired impact time is achieved by enforcing a sliding mode on a switching surface designed by using the concepts of collision course and estimated time-to-go. Unlike existing guidance laws, the proposed guidance strategy achieves impact time successfully even when the estimated interception time is greater than the desired impact time. Simulation results are also presented.