949 resultados para Error-Free Transformations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliability has emerged as a critical design constraint especially in memories. Designers are going to great lengths to guarantee fault free operation of the underlying silicon by adopting redundancy-based techniques, which essentially try to detect and correct every single error. However, such techniques come at a cost of large area, power and performance overheads which making many researchers to doubt their efficiency especially for error resilient systems where 100% accuracy is not always required. In this paper, we present an alternative method focusing on the confinement of the resulting output error induced by any reliability issues. By focusing on memory faults, rather than correcting every single error the proposed method exploits the statistical characteristics of any target application and replaces any erroneous data with the best available estimate of that data. To realize the proposed method a RISC processor is augmented with custom instructions and special-purpose functional units. We apply the method on the proposed enhanced processor by studying the statistical characteristics of the various algorithms involved in a popular multimedia application. Our experimental results show that in contrast to state-of-the-art fault tolerance approaches, we are able to reduce runtime and area overhead by 71.3% and 83.3% respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the objective to improve the reactor physics calculation on a 2D and 3D nuclear reactor via the Diffusion Equation, an adaptive automatic finite element remeshing method, based on the elementary area (2D) or volume (3D) constraints, has been developed. The adaptive remeshing technique, guided by a posteriori error estimator, makes use of two external mesh generator programs: Triangle and TetGen. The use of these free external finite element mesh generators and an adaptive remeshing technique based on the current field continuity show that they are powerful tools to improve the neutron flux distribution calculation and by consequence the power solution of the reactor core even though they have a minor influence on the critical coefficient of the calculated reactor core examples. Two numerical examples are presented: the 2D IAEA reactor core numerical benchmark and the 3D model of the Argonauta research reactor, built in Brasil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preparations of heterogeneous catalysts are usually complex processes that involve several procedures as precipitation, crystallization and hydrothermal treatments. This processes are really dependent by the operative conditions such as temperature, pH, concentration etc. Hence the resulting product is extremely affected by any possible variations in these parameters making this synthesis really fragile. With the aim to improve these operations has been decided to exploit a new possible strong environment-respectful process by mechanochemical treatment, which permits to carry out solvent free-solvent synthesis exploiting the Mixer Mill MM400 (Retsch) in order to have reproducible results. Two different systems have been studied in this kind of synthesis: a tin β -zeolite tested in a H-trasnfer reaction of cyclohexanone and a silver on titania catalyst used in the fluorination of 2,2 dimethyl glucaric acid. Each catalyst has been characterized by different techniques in order to understand the transformations involved in the mechanochemical treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is suggested here that the ultimate accuracy of DFT methods arises from the type of hybridization scheme followed. This idea can be cast into a mathematical formulation utilizing an integrand connecting the noninteracting and the interacting particle system. We consider two previously developed models for it, dubbed as HYB0 and QIDH, and assess a large number of exchange-correlation functionals against the AE6, G2/148, and S22 reference data sets. An interesting consequence of these hybridization schemes is that the error bars, including the standard deviation, are found to markedly decrease with respect to the density-based (nonhybrid) case. This improvement is substantially better than variations due to the underlying density functional used. We thus finally hypothesize about the universal character of the HYB0 and QIDH models.