946 resultados para Equilibrium distributions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285-570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently discovered scalar resonance at the Large Hadron Collider is now almost confirmed to be a Higgs boson, whose CP properties are yet to be established. At the International Linear Collider with and without polarized beams, it may be possible to probe these properties at high precision. In this work, we study the possibility of probing departures from the pure CP-even case, by using the decay distributions in the process e(+)e(-) -> t (t) over bar Phi, with Phi mainly decaying into a b (b) over bar pair. We have compared the case of a minimal extension of the Standard Model case (model I) with an additional pseudoscalar degree of freedom, with a more realistic case namely the CP-violating two-Higgs doublet model (model II) that permits a more general description of the couplings. We have considered the International Linear Collider with root s = 800 GeV and integrated luminosity of 300 fb(-1). Our main findings are that even in the case of small departures from the CP-even case, the decay distributions are sensitive to the presence of a CP-odd component in model II, while it is difficult to probe these departures in model I unless the pseudoscalar component is very large. Noting that the proposed degrees of beam polarization increase the statistics, the process demonstrates the effective role of beam polarization in studies beyond the Standard Model. Further, our study shows that an indefinite CP Higgs would be a sensitive laboratory to physics beyond the Standard Model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical study of a continuum plasticity field coupled to a Ginzburg-Landau model for superfluidity. The results suggest that a supersolid fraction may appear as a long-lived transient during the time evolution of the plasticity field at higher temperatures where both dislocation climb and glide are allowed. Supersolidity, however, vanishes with annealing. As the temperature is decreased, dislocation climb is arrested and any residual supersolidity due to incomplete annealing remains frozen. Our results may provide a resolution of many perplexing issues concerning a variety of experiments on bulk solid He-4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure-property correlation in the lead-free piezoelectric (1 - x)(Na0.5Bi0.5)TiO3-(x)BaTiO3 has been systematically investigated in detail as a function of composition (0 < x <= 0.11), temperature, electric field, and mechanical impact by Raman scattering, ferroelectric, piezoelectric measurement, x-ray, and neutron powder diffraction methods. Although x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc) + rhombohedral (R3c) for the precritical compositions, 0 <= x <= 0.05, (ii) cubiclike for 0.06 <= x <= 0.0675, and (iii) morphotropic phase boundary (MPB) like for 0.07 <= x < 0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubiclike and the MPB compositions. The cubiclike structure undergoes irreversible phase separation by electric poling as well as by pure mechanical impact. This cubiclike phase exhibits relaxor ferroelectricity in its equilibrium state. The short coherence length (similar to 50A degrees) of the out-of-phase octahedral tilts does not allow the normal ferroelectric state to develop below the dipolar freezing temperature, forcing the system to remain in a dipolar glass state at room temperature. Electric poling helps the dipolar glass state to transform to a normal ferroelectric state with a concomitant enhancement in the correlation length of the out-of-phase octahedral tilt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we calculate the potential for a prolate spheroidal distribution as in a dark matter halo with a radially varying eccentricity. This is obtained by summing up the shell-by-shell contributions of isodensity surfaces, which are taken to be concentric and with a common polar axis and with an axis ratio that varies with radius. Interestingly, the constancy of potential inside a shell is shown to be a good approximation even when the isodensity contours are dissimilar spheroids, as long as the radial variation in eccentricity is small as seen in realistic systems. We consider three cases where the isodensity contours are more prolate at large radii, or are less prolate or have a constant eccentricity. Other relevant physical quantities like the rotation velocity, the net orbital and vertical frequency due to the halo and an exponential disc of finite thickness embedded in it are obtained. We apply this to the kinematical origin of Galactic warp, and show that a prolate-shaped halo is not conducive to making long-lived warps - contrary to what has been proposed in the literature. The results for a prolate mass distribution with a variable axis ratio obtained are general, and can be applied to other astrophysical systems, such as prolate bars, for a more realistic treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a unique shear-induced crystallization phenomenon above the equilibrium freezing temperature (T-K(o)) in weakly swollen isotropic (L-i) and lamellar (L-alpha) mesophases with bilayers formed in a cationic-anionic mixed surfactant system. Synchrotron rheological X-ray diffraction study reveals the crystallization transition to be reversible under shear (i.e., on stopping the shear, the nonequilibrium crystalline phase L-c melts back to the equilibrium mesophase). This is different from the shear-driven crystallization below T-K(o), which is irreversible. Rheological optical observations show that the growth of the crystalline phase occurs through a preordering of the L-i phase to an L-alpha phase induced by shear flow, before the nucleation of the Lc phase. Shear diagram of the L-i phase constructed in the parameter space of shear rate ((gamma)) over dot vs. temperature exhibits L-i -> L-c and L-i -> L-alpha transitions above the equilibrium crystallization temperature (T-K(o)), in addition to the irreversible shear-driven nucleation of L-c in the L-i phase below T-K(o). In addition to revealing a unique class of nonequilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated mesophases of mixed amphiphilic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic understanding of the noncovalent interactions that influence the structures of the cis conformers and the equilibrium between the cis and the trans conformers, of the X-Pro tertiary amide motifs, is presented based on analyses of H-1-, C-13-NMR and FTIR absorption spectra of two sets of homologous peptides, X-Pro-Aib-OMe and X-Pro-NH-Me (where X is acetyl, propionyl, isobutyryl and pivaloyl), in solvents of varying polarities. First, this work shows that the cis conformers of any X-Pro tertiary amide motif, including Piv-Pro, are accessible in the new motifs X-Pro-Aib-OMe, in solution. These conformers are uniquely observable by FTIR spectroscopy at ambient temperatures and by NMR spectroscopy from temperatures as high as 273 K. This is made possible by the persistent presence of n(i-1i)* interactions at Aib, which also influence the disappearance of steric effects at these cis X-Pro rotamers. Second, contrary to conventional understanding, the energy contribution of steric effects to the cis/trans equilibrium at the X-Pro motifs is found to be nonvariant (0.54 +/- 0.02 kcal/mol) with increase in steric bulk on the X group. Third, the current studies provide direct evidence for the weak intramolecular interactions namely the n(i-1i)*, the N-Pro center dot center dot center dot Hi+1 (C(5)a), and the C-7 hydrogen bond that operate and influence the structures, stabilities, and dynamics between different conformational states of X-Pro tertiary amide motifs. NMR and IR spectral data suggest that the cis conformers of X-Pro motifs are ensembles of short-lived rotamers about the C-X-N-Pro bond. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 66-77, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a nonequilibrium strong-coupling approach to inhomogeneous systems of ultracold atoms in optical lattices. We demonstrate its application to the Mott-insulating phase of a two-dimensional Fermi-Hubbard model in the presence of a trap potential. Since the theory is formulated self-consistently, the numerical implementation relies on a massively parallel evaluation of the self-energy and the Green's function at each lattice site, employing thousands of CPUs. While the computation of the self-energy is straightforward to parallelize, the evaluation of the Green's function requires the inversion of a large sparse 10(d) x 10(d) matrix, with d > 6. As a crucial ingredient, our solution heavily relies on the smallness of the hopping as compared to the interaction strength and yields a widely scalable realization of a rapidly converging iterative algorithm which evaluates all elements of the Green's function. Results are validated by comparing with the homogeneous case via the local-density approximation. These calculations also show that the local-density approximation is valid in nonequilibrium setups without mass transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper discusses the effect of multiwall carbon nanotubes (MWNTs) on the structural relaxation and the intermolecular cooperativity in dynamically asymmetric blends of PS/PVME (polystyrene/poly(vinyl methyl ether)). The temperature regime where chain connectivity effects dominate the thermodynamic concentration fluctuation (T/T-g > 0.75, T-g is the glass transition temperature of the blends) was studied using dielectric spectroscopy (DS). Interestingly, in the blends with MWNTs a bimodal distribution of relaxation was obtained in the loss modulus spectra. This plausibly is due to different environments experienced by the faster component (PVME) in the presence of MWNTs. The segmental dynamics of PVME was observed to be significantly slowed down in the presence of MWNTs and an Arrhenius-type behavior, weakly dependent on temperature, is observed at higher frequencies. This non-equilibrium dynamics of PVME is presumed to be originating from interphase regions near the surface of MWNTs. The length scale of the cooperative rearranging region (xi CRR) at T-g, assessed by calorimetric measurements, was observed to be higher in the case of blends with MWNTs. An enhanced molecular level miscibility driven by MWNTs in the blends corroborates with the larger xi CRR and comparatively more number of segments in CRR (in contrast to neat blends) around T-g. The configurational entropy and length scale of the cooperative volume was mapped as a function of temperature in the temperature regime, Tg < T < T-g + 60 K. The blends phase separated by spinodal decomposition which further led to an interconnected PVME network in PS. This further led to materials with very high electrical conductivity upon demixing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaling behaviour has been observed at mesoscopic level irrespective of crystal structure, type of boundary and operative micro-mechanisms like slip and twinning. The presence of scaling at the meso-scale accompanied with that at the nano-scale clearly demonstrates the intrinsic spanning for different deformation processes and a true universal nature of scaling. The origin of a 1/2 power law in deformation of crystalline materials in terms of misorientation proportional to square root of strain is attributed to importance of interfaces in deformation processes. It is proposed that materials existing in three dimensional Euclidean spaces accommodate plastic deformation by one dimensional dislocations and their interaction with two dimensional interfaces at different length scales. This gives rise to a 1/2 power law scaling in materials. This intrinsic relationship can be incorporated in crystal plasticity models that aim to span different length and time scales to predict the deformation response of crystalline materials accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane and ethane are the simplest hydrocarbon molecules that can form clathrate hydrates. Previous studies have reported methods for calculating the three-phase equilibrium using Monte Carlo simulation methods in systems with a single component in the gas phase. Here we extend those methods to a binary gas mixture of methane and ethane. Methane-ethane system is an interesting one in that the pure components form sII clathrate hydrate whereas a binary mixture of the two can form the sII clathrate. The phase equilibria computed from Monte Carlo simulations show a good agreement with experimental data and are also able to predict the sI-sII structural transition in the clathrate hydrate. This is attributed to the quality of the TIP4P/Ice and TRaPPE models used in the simulations. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smoothed functional (SF) schemes for gradient estimation are known to be efficient in stochastic optimization algorithms, especially when the objective is to improve the performance of a stochastic system However, the performance of these methods depends on several parameters, such as the choice of a suitable smoothing kernel. Different kernels have been studied in the literature, which include Gaussian, Cauchy, and uniform distributions, among others. This article studies a new class of kernels based on the q-Gaussian distribution, which has gained popularity in statistical physics over the last decade. Though the importance of this family of distributions is attributed to its ability to generalize the Gaussian distribution, we observe that this class encompasses almost all existing smoothing kernels. This motivates us to study SF schemes for gradient estimation using the q-Gaussian distribution. Using the derived gradient estimates, we propose two-timescale algorithms for optimization of a stochastic objective function in a constrained setting with a projected gradient search approach. We prove the convergence of our algorithms to the set of stationary points of an associated ODE. We also demonstrate their performance numerically through simulations on a queuing model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The(1-x) BiFeO3-(x) PbTiO3 solid solution exhibiting a Morphotropic Phase Boundary (MPB) has attracted considerable attention recently because of its unique features such as multiferroic, high Curie point (T-C similar to 700 degrees C) and giant tetragonality (c/a -1 similar to 0.19). Different research groups have reported different composition range of MPB for this system. In this work we have conclusively proved that the wide composition range of MPB reported in the literature is due to kinetic arrest of the metastable rhombohedral phase and that if sufficient temperature and time is allowed the metastable phase disappears. The genuine MPB was found to be x=0.27 for which the tetragonal and the rhombohedral phases are in thermodynamic equilibrium. In-situ high temperature structural study of x=0.27 revealed the sluggish kinetics associated with the temperature induced structural transformation. Neutron powder diffraction study revealed that themagnetic ordering at room temperature occurs in the rhombohedral phase. The magnetic structure was found to be commensurate G-type antiferromagnetic with magnetic moments parallel to the c-direction (of the hexagonal cell). The present study suggests that the equilibrium properties in this solid solution series should be sought for x=0.27.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small covers were introduced by Davis and Januszkiewicz in 1991. We introduce the notion of equilibrium triangulations for small covers. We study equilibrium and vertex minimal 4-equivariant triangulations of 2-dimensional small covers. We discuss vertex minimal equilibrium triangulations of RP3#RP3, S-1 x RP2 and a nontrivial S-1 bundle over RP2. We construct some nice equilibrium triangulations of the real projective space RPn with 2(n) + n 1 vertices. The main tool is the theory of small covers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not support such tails. Linear relaxation is found to be a borderline case in which long tails are exponentially suppressed in time but not eliminated. Relaxation stronger than linear suppresses long tails immediately, but may lead to strong transient peaks in the probability distribution. We also find that a delta-function initial distribution under stronger than linear decay displays not one but two different regimes of diffusive spreading.