930 resultados para Equilibrium Surface Tension
Resumo:
The transition process of the thermocapillary convection from a steady and axisymmetric mode to the oscillatory mode in a liquid bridge with a fixed aspect ratio and varied volume ratio was studied experimentally. To ensure the surface tension to play an important role in the ground-based experiment, the geometrical configuration of the liquid bridge was so designed that the associated dynamic Bond number Bd ≈ 1. The velocity fields were measured by Particle Image Velocimetry (PIV) technique to effectively distinguish the different flow modes during the transition period in the experiments. Our experiments showed that as the temperature difference increased the slender and fat bridges presented quite different features on the evolution in their flow feature: for the former the thermocapillary convection transformed from a steady and axisymmetric pattern directly into an oscillatory one; but for the latter a transition flow status, characterized by an axial asymmetric steady convection, appeared before reaching the oscillatory mode. Experimental observations agree with the results of numerical simulations and it is obvious that the volume of liquid bridge is a sensitive geometric parameter. In addition, at the initial stage of the oscillation, for the former a rotating oscillatory convection with azimuthal wave number m = 1 was observed while for the latter a pulsating oscillatory pattern with azimuthal wave number m = 2 emerged, and then with further increase of the temperature difference, the pulsating oscillatory convection with azimuthal wave number m = 2 evolved into a rotating oscillatory pattern with azimuthal wave number m = 2.
Resumo:
A new model is developed for predicting the transition from the slug to annular flow of adiabatic two-phase gas/liquid flow in microgravity (mu g) environment. This model is based on the analyses of the effects of the surface tension and the gas inertia in a sense of more physical approach. The drift-flux model is applied to determine the gas void fraction near the transition region. The new model is compared with previous models and experimental data, and the results show the improvement in explanation of the experimental results.
Resumo:
A theoretical investigation is performed on the thermocapillary motion of two bubbles in arbitrary configuration in microgravity environment under the assumption that the surface tension is high enough to keep the bubbles spherical. The two bubbles are dr
Resumo:
In this paper, we develop a novel moving mesh method suitable for solving axisymmetric free-boundary problems, including the Marangoni effect induced by surfactant or temperature variation. This method employs a body-fitted grid system where the gas-liquid interface is one line of the grid system. We model the surfactant equation of state with a non-linear Langmuir law, and, for simplicity, we limit ourselves to the situation of an insoluble surfactant. We solve complicated dynamic boundary conditions accurately on the gas-liquid interface in the framework of finite-volume methods. Our method is used to study the effect of a surfactant on the skin friction of a bubble in a uniaxial flow. For the limiting case where the surface diffusivity is zero, the effect of a tangential stress generated by the surface tension gradient, allows us to explain a new phenomenon in high concentration regimes: larger surface tension, but also larger deformation. Furthermore, this condition leads to the formation of boundary layers and flow separation at high Reynolds numbers. The influence of these complex flow patterns is examined. © 2005 Elsevier SAS. All rights reserved.
Resumo:
Theoretical predictions of the diameters of continuous ink-jets downstream of long nozzles are generalized to include the important cases of ink-jet fluids and shorter nozzles where the velocity profile at the nozzle exit is undeveloped (non-parabolic). Comparisons of the new predictions with experiments and simulations are made for fairly long nozzles with tapered profiles and short nozzles with conical profiles; experimental and simulated profiles are also compared downstream of the nozzle exit for both industrial and large scale ink-jet print heads. Precise measurements of the un-modulated jet diameters downstream of the nozzle exit can set really useful limits to the possible shapes of the flow profile right at the nozzle exit, and in particular allow some assessment of the axial velocity gradients and fluid shear rates at the nozzle exit where direct speed measurement is usually impractical. Simulations allow further study of the relaxation of the velocity profile downstream of the nozzle exit, and are reported for both un-modulated and modulated CIJ jetting. Implications of this work include speeding up CIJ simulations, absolute calibration of the applied CIJ system modulation, and the likely magnitude of dynamic surface tension effects on observed CIJ satellite speeds.
Resumo:
This paper provides an overview of ongoing studies in the area of thermocapillary convection driven by a surface tension gradient parallel to the free surface in a floating zone. Here, research interests are focused around the onset of oscillatory thermocapillary convection, also known as the transition from quasisteady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, and the margin relationship can be represented by a complex function of the critical parameters. The experimental results indicate that the velocity deviation of an oscillatory flow has the same order of magnitude as that of an average flow, and the deviations of other quantities, such as temperature and free surface radii fluctuations, are much smaller when compared with their normal counterparts. Therefore, the onset of oscillation should be a result of the dynamic process in a fluid, and the problem is a strongly nonlinear one. In the past few decades, several theoretical models have been introduced to tackle the problem using analytical methods, linear instability analysis methods, energy instability methods, and unsteady 3D numerical methods. The last of the above mentioned methods is known to be the most suitable for a thorough analysis of strong nonlinear processes, which generally leads to a better comparison with the experimental results. The transition from oscillatory thermocapillary convection to turbulence falls under the studies of chaotic behavior in a new system, which opens a fascinating new frontier in nonlinear science, a hot research area drawing many recent works. This paper reviews theoretical models and analysis, and also experimental research, on thermocapillary connection in floating zones. It cites 93 references.
Resumo:
We studied the dependence of thermodynamic variables in a sonoluminescing ~SL! bubble on various physical factors, which include viscosity, thermal conductivity, surface tension, the equation of state of the gas inside the bubble, as well as the compressibility of the surrounding liquid. The numerical solutions show that the existence of shock waves in the SL parameter regime is very sensitive to these factors. Furthermore, we show that even without shock waves, the reflection of continuous compressional waves at the bubble center can produce the high temperature and picosecond time scale light pulse of the SL bubble, which implies that SL may not necessarily be due to shock waves.
Resumo:
The numerical solutions of or(R) given by two different methods (Samsonov et al., 2003; and Lu et al., 2005) are compared with the result that they are coincident closely (the difference is within 4%). We conclude that it is necessary to consider the Tolman correction in the calculation of fluid dynamics in carbon nanotubes. Although our conclusion is the same as that of Prylutskyy et al. (2005), the sign of our Tolman correction is opposite to theirs, and the difference can be attributed to the errors appeared in the paper of Prylutskyy et al.
Resumo:
The hydrothermal wave was investigated numerically for large-Prandtl-number fluid (Pr = 105.6) in a shallow cavity with different heated sidewalls. The traveling wave appears and propagates in the direction opposite to the surface flow (upstream) in the case of zero gravity when the applied temperature difference grows and over the critical value. The phase relationships of the disturbed velocity, temperature and pressure demonstrate that the traveling wave is driven by the disturbed temperature, which is named hydrothermal wave. The hydrothermal wave is so weak that the oscillatory flow field and temperature distribution can hardly be observed in the liquid layer. The exciting mechanism of hydrothermal wave is analyzed and discussed in the present paper.
Resumo:
The coupling mechanism of Rayleigh effect and Marangoni effect in a liquid-porous system is investigated using a linear stability analysis. The eigenvalue problem is solved by means of a Chebyshev tau method. Results indicate that there are three coupling modes between the Rayleigh effect and the Marangoni effect for different depth ratios. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports that an optical diagnostic system consisting of Mach-Zehnder interferometer with a phase shift device and image processor has been used for study of the kinetics of protein crystal growing process. The crystallization process of protein crystal by vapour diffusion is investigated. The interference fringes are observed in real time. The present experiment demonstrates that the diffusion and the sedimentation influence the crystallization of protein crystal which grows in solution, and the concentration capillary convection associated with surface tension occurs at the vicinity of free surface of the protein mother liquor, and directly affects on the outcome of protein crystallization. So far the detailed analysis and the important role of the fluid phenomena in protein crystallization have been discussed a little in both space- and ground-based crystal growth experiments. It is also found that these fluid phenomena affect the outcome of protein crystallization, regular growth, and crystal quality. This may explain the fact that many results of space-based investigation do not show overall improvement.
Resumo:
A new model consisting of an inhomogeneous porous medium saturated by incompressible fluid is investigated. We focus on the effects of inhomogeneity for the streamline patterns and instabilities of the system. Influences of the 'mean porosity' and gradient of distributions of porosity are also emphasized. The results cannot be obtained by studying the media with constant porosity as carried out by other researchers, and have not been discussed before.
Resumo:
Die swell is an important, phenomenon. in polymer processing, and is explained usually by rheological properties of the fluid. Because of the nonuniform of temperature distribution on the free surface of the liquid jet, the thermo capillary convection driven by surface tension gradient exists. The rheological fluid flowing out of a die and painting on a moving solid wall is studied by the numerical finite element method of a two-dimensional and unsteady model in the present paper, and both the rheological effect of a non-Newtonian fluid and the thermocapillary effect are considered. The results show that both,effects; will enlarge the cross-section of the fluid jet, and the rheological effect of non-Newtonian fluid dominates the process in general.
Resumo:
The onset of oscillation in the floating zone convection driven by the gradient of surface tension was experimentally studied, and discussions were concentrated on the influence of liquid bridge volume on the onset of oscillation. Distributions of critical applied temperature difference and frequency depending on the volume of the liquid bridge were obtained, and there was a gap range of liquid volume which separated the curve of marginal stability into two parts for fixed rod diameter and aspect ratio. The results imply that the volume of the liquid bridge is a sensitive critical parameter for the onset of oscillation. The implication on the instability is also discussed in the present paper.
Resumo:
The onset of oscillation in the floating zone convection driven by the gradient of surface tension was studied numerically for an unsteady and two-dimensional model, and studies were concentrated on the influence of liquid bridge volume on the onset of oscillation in comparison with the experimental results in the Paper I. The numerical results agree with the experimental ones presented in the previous paper, in which the distributions of critical applied temperature difference depending on the volume of liquid bridge and a gap range of liquid volume in marginal stability curve were obtained.