969 resultados para Equations - numerical solutions
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work was developed starting the study of traditionals mathematical models that describe the epidemiology of infectious díseases by direct or indirect transmission. We did the classical approach of equilibrium solutions search, its analysis of stability analytically and by numerical solutions. After, we applied these techniques in a compartimental model of Dengue transmission that consider the mosquito population (susceptible vector Vs and 'infected vector VI), human population (suseeptíble humans S, infected humans I and recovered humans R) and just one sorotype floating in this population. We found the equilibrium solutions and from their analises, it was possible find the reprodution rate of dísease and which define if the disease will be endemic or not in the population.- ext, we used the method described a..~, [1] to study the infíuence of seasonalíty at vírus transmission, when it just acts on one of rates related with the vector. Lastly, we made de modeling considering the periodicity of alI rates, thereby building, a modeI with temporal dependence that permits to study periodicity of transmission through of the approach of parametrical ressonance and genetic algorithm
Resumo:
Design tools have existed for decades for standard step-index fibers, with analytical expressions for cutoff conditions as a function of core size, refractive indexes, and wavelength. We present analytical expressions for cutoff conditions for fibers with a ring-shaped propagation region. We validate our analytical expressions against numerical solutions, as well as via asymptotic analysis yielding the existing solutions for standard step-index fiber. We demonstrate the utility of our solutions for optimizing fibers supporting specific eigenmode behaviors of interest for spatial division multiplexing. In particular, we address large mode separation for orbital angular momentum modes and fibers supporting only modes with a single intensity ring.
Resumo:
This paper presents an investigation into some practical issues that may be present in a real experiment, when trying to validate the theoretical frequency response curve of a two degree-of-freedom nonlinear system consisting of coupled linear and nonlinear oscillators. Some specific features, such as detached resonance curves, have been theoretically predicted in multi degree-of-freedom nonlinear oscillators, when subject to harmonic excitation, and the system parameters have been shown to be fundamental in achieving such features. When based on a simplified model, approximate analytical expression for the frequency response curves may be derived, which may be validated by the numerical solutions. In a real experiment, however, the practical achievability of such features was previously shown to be greatly affected by small disturbances induced by gravity and inertia, which led to some solutions becoming unstable which had been predicted to be stable. In this work a practical system configuration is proposed where such effects are reduced so that the previous limitations are overcome. A virtual experiment is carried out where a detailed multi-body model of the oscillator is assembled and the effects on the system response are investigated.
Resumo:
Detailed monitoring of the groundwater table can provide important data about both short- and long-term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time-series analysis using Fourier analysis, cross-correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross-correlation analysis. We also employed a little-used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study.
Resumo:
Submesoscale activity over the Argentinian shelf is investigated by means of high resolution primitive equation numerical solutions. These reveal energetic turbulent activity (visually similar to the one occasionally seen in satellite images) at scales O(5 km) in fall and winter that is linked to mixed layer baroclinic instability. The air-sea heat flux responsible for (i) deepening the upper ocean boundary layer (at these seasons) and (ii) maintaining a cross-shelf background density gradient is the key environmental parameter controlling submesoscale activity. Implications of submesoscale turbulence are investigated. Its mixing efficiency estimated by computing a diffusivity coefficient is above 30 m(2) s(-1) away from the shallowest regions. Aggregation of surface buoyant material by submesoscale currents occurs within hours and is presumably important to the ecosystem.
Resumo:
The numerical simulation of flows of highly elastic fluids has been the subject of intense research over the past decades with important industrial applications. Therefore, many efforts have been made to improve the convergence capabilities of the numerical methods employed to simulate viscoelastic fluid flows. An important contribution for the solution of the High-Weissenberg Number Problem has been presented by Fattal and Kupferman [J. Non-Newton. Fluid. Mech. 123 (2004) 281-285] who developed the matrix-logarithm of the conformation tensor technique, henceforth called log-conformation tensor. Its advantage is a better approximation of the large growth of the stress tensor that occur in some regions of the flow and it is doubly beneficial in that it ensures physically correct stress fields, allowing converged computations at high Weissenberg number flows. In this work we investigate the application of the log-conformation tensor to three-dimensional unsteady free surface flows. The log-conformation tensor formulation was applied to solve the Upper-Convected Maxwell (UCM) constitutive equation while the momentum equation was solved using a finite difference Marker-and-Cell type method. The resulting developed code is validated by comparing the log-conformation results with the analytic solution for fully developed pipe flows. To illustrate the stability of the log-conformation tensor approach in solving three-dimensional free surface flows, results from the simulation of the extrudate swell and jet buckling phenomena of UCM fluids at high Weissenberg numbers are presented. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Sono indagate le implicazioni teoriche e sperimentali derivanti dall'assunzione, nella teoria della relatività speciale, di un criterio di sincronizzazione (detta assoluta) diverso da quello standard. La scelta della sincronizzazione assoluta è giustificata da alcune considerazioni di carattere epistemologico sullo status di fenomeni quali la contrazione delle lunghezze e la dilatazione del tempo. Oltre che a fornire una diversa interpretazione, la sincronizzazione assoluta rappresenta una estensione del campo di applicazione della relatività speciale in quanto può essere attuata anche in sistemi di riferimento accelerati. Questa estensione consente di trattare in maniera unitaria i fenomeni sia in sistemi di riferimento inerziali che accelerati. L'introduzione della sincronizzazione assoluta implica una modifica delle trasformazioni di Lorentz. Una caratteristica di queste nuove trasformazioni (dette inerziali) è che la trasformazione del tempo è indipendente dalle coordinate spaziali. Le trasformazioni inerziali sono ottenute nel caso generale tra due sistemi di riferimento aventi velocità (assolute) u1 e u2 comunque orientate. Viene mostrato che le trasformazioni inerziali possono formare un gruppo pur di prendere in considerazione anche riferimenti non fisicamente realizzabili perché superluminali. È analizzato il moto rigido secondo Born di un corpo esteso considerando la sincronizzazione assoluta. Sulla base delle trasformazioni inerziali si derivano le trasformazioni per i campi elettromagnetici e le equazioni di questi campi (che sostituiscono le equazioni di Maxwell). Si mostra che queste equazioni contengono soluzioni in assenza di cariche che si propagano nello spazio come onde generalmente anisotrope in accordo con quanto previsto dalle trasformazioni inerziali. L'applicazione di questa teoria elettromagnetica a sistemi accelerati mostra l'esistenza di fenomeni mai osservati che, pur non essendo in contraddizione con la relatività standard, ne forzano l'interpretazione. Viene proposto e descritto un esperimento in cui uno di questi fenomeni è misurabile.
Resumo:
Thermoelectric generators (TEG) are solid state devices and are able to convert thermal energy directly into electricity and thus could play an important role in waste heat recovery in the near future. Half-Heusler (HH) compounds with the general formula MNiSn (M = Ti, Zr, Hf) built a promising class of materials for these applications because of their high Seebeck coefficients, their environmentally friendliness and their cost advantage over conventional thermoelectric materials.rnrnMuch of the existing literature on HH deals with thermoelectric characterization of n-type MNiSn and p-type MCoSb compounds. Studies on p-type MNiSn-based HHs are far fewer in number. To fabricate high efficient thermoelectric modules based on HH compounds, high performance p-type MNiSn systems need to be developed that are compatible with the existing n-type HH compounds. This thesis explores synthesis strategies for p-type MNiSn based compounds. In particular, the efficacy of transition metals (Sc, La) and main group elements (Al, Ga, In) as acceptor dopants on the Sn-site in ZrNiSn, was investigated by evaluating their thermoelectric performance. The most promising p-type materials could be achieved with transition metal dopants, where the introduction of Sc on the Zr side, yielded the highest Seebeck coefficient in a ternary NiSn-based HH compound up to this date. Hall effect and band gap measurements of this system showed, that the high mobility of minority carrier electrons dominate the transport properties at temperatures above 500 K. It could be shown that this is the reason, why n-type HH are successful TE materials for high temperature applications, and that p-types are subjected to bipolar effects which will lead to diminished thermoelectric efficiencies at high temperatures.rnrnTo complement the experimental investigations on different metal dopants and their influence on the TE properties of HH compounds, numerical solutions to the Boltzmann transport equation were used to predict the optimum carrier concentration where the maximum TE efficiency occurs for p-type HH compounds. The results for p-type samples showed that can not be treated within a simple parabolic band model approach, due to bipolar and multi-band effects.rnrnThe parabolic band model is commonly used for bulk TE materials. It is most accurate when the transport properties are dominated by one single carrier type. Since the transport properties of n-type HH are dominated by only one carrier type (high mobility electrons), it could be shown, that the use of a simple parabolic band model lead to a successful prediction of the optimized carrier concentration and thermoelectric efficiency in n-type HH compounds. rn
Resumo:
Thema dieser Arbeit ist die Entwicklung und Kombination verschiedener numerischer Methoden, sowie deren Anwendung auf Probleme stark korrelierter Elektronensysteme. Solche Materialien zeigen viele interessante physikalische Eigenschaften, wie z.B. Supraleitung und magnetische Ordnung und spielen eine bedeutende Rolle in technischen Anwendungen. Es werden zwei verschiedene Modelle behandelt: das Hubbard-Modell und das Kondo-Gitter-Modell (KLM). In den letzten Jahrzehnten konnten bereits viele Erkenntnisse durch die numerische Lösung dieser Modelle gewonnen werden. Dennoch bleibt der physikalische Ursprung vieler Effekte verborgen. Grund dafür ist die Beschränkung aktueller Methoden auf bestimmte Parameterbereiche. Eine der stärksten Einschränkungen ist das Fehlen effizienter Algorithmen für tiefe Temperaturen.rnrnBasierend auf dem Blankenbecler-Scalapino-Sugar Quanten-Monte-Carlo (BSS-QMC) Algorithmus präsentieren wir eine numerisch exakte Methode, die das Hubbard-Modell und das KLM effizient bei sehr tiefen Temperaturen löst. Diese Methode wird auf den Mott-Übergang im zweidimensionalen Hubbard-Modell angewendet. Im Gegensatz zu früheren Studien können wir einen Mott-Übergang bei endlichen Temperaturen und endlichen Wechselwirkungen klar ausschließen.rnrnAuf der Basis dieses exakten BSS-QMC Algorithmus, haben wir einen Störstellenlöser für die dynamische Molekularfeld Theorie (DMFT) sowie ihre Cluster Erweiterungen (CDMFT) entwickelt. Die DMFT ist die vorherrschende Theorie stark korrelierter Systeme, bei denen übliche Bandstrukturrechnungen versagen. Eine Hauptlimitation ist dabei die Verfügbarkeit effizienter Störstellenlöser für das intrinsische Quantenproblem. Der in dieser Arbeit entwickelte Algorithmus hat das gleiche überlegene Skalierungsverhalten mit der inversen Temperatur wie BSS-QMC. Wir untersuchen den Mott-Übergang im Rahmen der DMFT und analysieren den Einfluss von systematischen Fehlern auf diesen Übergang.rnrnEin weiteres prominentes Thema ist die Vernachlässigung von nicht-lokalen Wechselwirkungen in der DMFT. Hierzu kombinieren wir direkte BSS-QMC Gitterrechnungen mit CDMFT für das halb gefüllte zweidimensionale anisotrope Hubbard Modell, das dotierte Hubbard Modell und das KLM. Die Ergebnisse für die verschiedenen Modelle unterscheiden sich stark: während nicht-lokale Korrelationen eine wichtige Rolle im zweidimensionalen (anisotropen) Modell spielen, ist in der paramagnetischen Phase die Impulsabhängigkeit der Selbstenergie für stark dotierte Systeme und für das KLM deutlich schwächer. Eine bemerkenswerte Erkenntnis ist, dass die Selbstenergie sich durch die nicht-wechselwirkende Dispersion parametrisieren lässt. Die spezielle Struktur der Selbstenergie im Impulsraum kann sehr nützlich für die Klassifizierung von elektronischen Korrelationseffekten sein und öffnet den Weg für die Entwicklung neuer Schemata über die Grenzen der DMFT hinaus.
Resumo:
BACKGROUND Aortic dissection is a severe pathological condition in which blood penetrates between layers of the aortic wall and creates a duplicate channel - the false lumen. This considerable change on the aortic morphology alters hemodynamic features dramatically and, in the case of rupture, induces markedly high rates of morbidity and mortality. METHODS In this study, we establish a patient-specific computational model and simulate the pulsatile blood flow within the dissected aorta. The k-ω SST turbulence model is employed to represent the flow and finite volume method is applied for numerical solutions. Our emphasis is on flow exchange between true and false lumen during the cardiac cycle and on quantifying the flow across specific passages. Loading distributions including pressure and wall shear stress have also been investigated and results of direct simulations are compared with solutions employing appropriate turbulence models. RESULTS Our results indicate that (i) high velocities occur at the periphery of the entries; (ii) for the case studied, approximately 40% of the blood flow passes the false lumen during a heartbeat cycle; (iii) higher pressures are found at the outer wall of the dissection, which may induce further dilation of the pseudo-lumen; (iv) highest wall shear stresses occur around the entries, perhaps indicating the vulnerability of this region to further splitting; and (v) laminar simulations with adequately fine mesh resolutions, especially refined near the walls, can capture similar flow patterns to the (coarser mesh) turbulent results, although the absolute magnitudes computed are in general smaller. CONCLUSIONS The patient-specific model of aortic dissection provides detailed flow information of blood transport within the true and false lumen and quantifies the loading distributions over the aorta and dissection walls. This contributes to evaluating potential thrombotic behavior in the false lumen and is pivotal in guiding endovascular intervention. Moreover, as a computational study, mesh requirements to successfully evaluate the hemodynamic parameters have been proposed.
Resumo:
The aim of this paper is to clarify the role played by the most commonly used viscous terms in simulating viscous laminar flows using the weakly compressible approach in the context of smooth particle hydrodynamics (WCSPH). To achieve this, Takeda et al. (Prog. Theor. Phys. 1994; 92(5):939–960), Morris et al. (J. Comput. Phys. 1997; 136:214–226) and Monaghan–Cleary–Gingold's (Appl. Math. Model. 1998; 22(12):981–993; Monthly Notices of the Royal Astronomical Society 2005; 365:199–213) viscous terms will be analysed, discussing their origins, structures and conservation properties. Their performance will be monitored with canonical flows of which related viscosity phenomena are well understood, and in which boundary effects are not relevant. Following the validation process of three previously published examples, two vortex flows of engineering importance have been studied. First, an isolated Lamb–Oseen vortex evolution where viscous effects are dominant and second, a pair of co-rotating vortices in which viscous effects are combined with transport phenomena. The corresponding SPH solutions have been compared to finite-element numerical solutions. The SPH viscosity model's behaviour in modelling the viscosity related effects for these canonical flows is adequate
Resumo:
A mathematical formulation for finite strain elasto plastic consolidation of fully saturated soil media is presented. Strong and weak forms of the boundary-value problem are derived using both the material and spatial descriptions. The algorithmic treatment of finite strain elastoplasticity for the solid phase is based on multiplicative decomposition and is coupled with the algorithm for fluid flow via the Kirchhoff pore water pressure. Balance laws are written for the soil-water mixture following the motion of the soil matrix alone. It is shown that the motion of the fluid phase only affects the Jacobian of the solid phase motion, and therefore can be characterized completely by the motion of the soil matrix. Furthermore, it is shown from energy balance consideration that the effective, or intergranular, stress is the appropriate measure of stress for describing the constitutive response of the soil skeleton since it absorbs all the strain energy generated in the saturated soil-water mixture. Finally, it is shown that the mathematical model is amenable to consistent linearization, and that explicit expressions for the consistent tangent operators can be derived for use in numerical solutions such as those based on the finite element method.
Resumo:
Finite element hp-adaptivity is a technology that allows for very accurate numerical solutions. When applied to open region problems such as radar cross section prediction or antenna analysis, a mesh truncation method needs to be used. This paper compares the following mesh truncation methods in the context of hp-adaptive methods: Infinite Elements, Perfectly Matched Layers and an iterative boundary element based methodology. These methods have been selected because they are exact at the continuous level (a desirable feature required by the extreme accuracy delivered by the hp-adaptive strategy) and they are easy to integrate with the logic of hp-adaptivity. The comparison is mainly based on the number of degrees of freedom needed for each method to achieve a given level of accuracy. Computational times are also included. Two-dimensional examples are used, but the conclusions directly extrapolated to the three dimensional case.