669 resultados para Epilepsy.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is based on discussions and submissions from an expert working group consisting of veterinarians, animal care staff and scientists with expert knowledge relevant to the field and aims to facilitate the implementation of the Three Rs (replacement, reduction and refinement) in the use of animal models or procedures involving seizures, convulsions and epilepsy. Each of these conditions will be considered, the specific welfare issues discussed, and practical measures to reduce animal use and suffering suggested. The emphasis is on refinement since this has the greatest potential for immediate implementation, and some general issues for refinement are summarised to help achieve this, with more detail provided on a range of specific refinements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate if Magnetoencephalography (MEG) can add non-redundant information to guide implantation sites for intracranial recordings (IR). The contribution of MEG to intracranial recording planning was evaluated in 12 consecutive patients assessed pre-surgically with MEG followed by IR. Primary outcome measures were the identification of focal seizure onset in IR and favorable surgical outcome. Outcome measures were compared to those of 12 patients matched for implantation type in whom non-invasive pre-surgical assessment suggested clear hypotheses for implantation (non-MEG group). In the MEG group, non-invasive assessment without MEG was inconclusive, and MEG was then used to further help identify implantation sites. In all MEG patients, at least one virtual MEG electrode generated suitable hypotheses for the location of implantations. No differences in outcome measures were found between non-MEG and MEG groups. Although the MEG group included more complex patients, it showed similar percentage of successful implantations as the non-MEG group. This suggests that MEG can contribute to identify implantation sites where standard methods failed. © 2013 Springer Science+Business Media New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few years, zonisamide has been proposed as a potentially useful medication for patients with focal seizures, with or without secondary generalization. Since psychiatric adverse effects, including mania, psychosis, and suicidal ideation, have been associated with its use, it was suggested that the presence of antecedent psychiatric disorders is an important factor associated with the discontinuation of zonisamide therapy in patients with epilepsy. We, therefore, set out to assess the tolerability profile of zonisamide in a retrospective chart review of 23 patients with epilepsy and comorbid mental disorders, recruited from two specialist pediatric (n=11) and adult (n=12) neuropsychiatry clinics. All patients had a clinical diagnosis of treatment-refractory epilepsy after extensive neurophysiological and neuroimaging investigations. The vast majority of patients (n=22/23, 95.7%) had tried previous antiepileptic medications, and most adult patients (n=9/11, 81.8%) were on concomitant medication for epilepsy. In the majority of cases, the psychiatric adverse effects of zonisamide were not severe. Four patients (17.4%) discontinued zonisamide because of lack of efficacy, whereas only one patient (4.3%) discontinued it because of the severity of psychiatric adverse effects (major depressive disorder). The low discontinuation rate of zonisamide in a selected population of patients with epilepsy and neuropsychiatric comorbidity suggests that this medication is safe and reasonably well-tolerated for use in patients with treatment-refractory epilepsy. Given the limitations of the present study, including the relatively small sample size, further research is warranted to confirm this finding. © 2013 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neural bases of altered consciousness in patients with epilepsy during seizures and at rest have raised significant interest in the last decade. This exponential growth has been supported by the parallel development of techniques and methods to investigate brain function noninvasively with unprecedented spatial and temporal resolution. In this article, we review the contribution of magnetoencephalography to deconvolve the bioelectrical changes associated with impaired consciousness during seizures. We use data collected from a patient with refractory absence seizures to discuss how spike-wave discharges are associated with perturbations in optimal connectivity within and between brain regions and discuss indirect evidence to suggest that this phenomenon might explain the cognitive deficits experienced during prolonged 3/s spike-wave discharges. © 2013 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To describe the electroclinical features of subjects who presented with a photosensitive benign myoclonic epilepsy in infancy (PBMEI). Methods: The patients were selected from a group of epileptic subjects with seizure onset in infancy or early childhood. Inclusion criteria were the presence of photic-induced myoclonic seizures and a favorable outcome. Cases with less than 24 month follow up were excluded from the analysis. Results: Eight patients were identified (4 males, 4 females). Personal history was uneventful. All of them had familial antecedents of epilepsy. Psychomotor development was normal in 6 cases, both before and after seizure onset. One patient showed a mild mental retardation and a further patient showed some behavioral disturbances. Neuroradiological investigations, when performed (5 cases), gave normal results. The clinical manifestations were typical and could vary from upward movements of the eyes to myoclonic jerks of the head and shoulders, isolated or briefly repetitive, never causing a fall. Age of onset was between 11 months and 3 years and 2 months. Characteristically, the seizures were always triggered by photic stimulation. Non photo-induced spontaneous myoclonic attacks were reported in 2 cases during the follow-up. Other types of seizures were present at follow-up in 2 cases. The outcome was favorable, even if, usually, seizure control required high AED plasma levels. Since the clinical symptoms were not recognized early, some patients were treated only many years after the onset of symptoms. Conclusion: Among BMEI patients, our cases constitute a subgroup in which myoclonic jerks were always triggered by photostimulation, in particular at onset of their epilepsy. © 2006 International League Against Epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetoencephalographic (MEG) signals, like electroencephalographic (EEG) measures, are the direct extracranial manifestations of neuronal activation. The two techniques can detect time-varying changes in electromagnetic activity with a sub-millisecond time resolution. Extra-cranial electromagnetic measures are the cornerstone of the non-invasive diagnostic armamentarium in patients with epilepsy. Their extremely high temporal resolution – comparable to intracranial recordings – is the basis for a precise definition of onset and propagation of ictal and interictal abnormalities. Given the cost of the infrastructure and equipment, MEG has yet to develop into a routinely applicable diagnostic tool in clinical settings. However, in recent years, an increasing number of patients with epilepsy have been investigated – usually in the context of presurgical evaluation of refractory epilepsies – and initial encouraging results have been reported. We will briefly review the principles and the technology behind MEG and its contribution in the diagnostic work-up of patients with epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate if magnetoencephalography (MEG) can identify implantation sites for intracranial recordings (IR). Method: Two groups of 12 patients assessed for surgery with IR with and without MEG were compared (MEG and control groups). In the control group, non-invasive presurgical assessment without MEG suggested clear hypotheses for implantation. In the MEG group, non-invasive assessment was inconclusive, and MEG was used to identify implantation sites. Both groups were matched for implantation type. The success of implantation was defined by findings in IR: a) Focal seizure onset; b)Unilateral focal abnormal responses to single pulse electrical stimulation(SPES); and c) Concordance between a) and b). Results: In all MEG patients, at least one virtual MEG electrode generated suitable hypotheses for the location of implantations. The proportion of patients showing focal seizure onset restricted to one hemisphere was similar in control and MEG groups (6/12 vs. 11/12, Fisher’s exact test,p = 0.0686). The proportion of patients showing unilateral responses to SPES was lower in the control than in the MEG group (7/12 vs. 12/12,p = 0.0373). Conclusion: The MEG group showed similar or higher incidence of successful implantations than controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated 50 young patients with a diagnosis of Rolandic Epilepsy (RE) for the presence of abnormalities in autonomic tone compared with 50 young patients with idiopathic generalized epilepsy with absences and 50 typically developing children of comparable age. We analyzed time domain (N-N interval, pNN50) and frequency domain (High Frequency (HF), Low Frequency (LF) and LF/HF ratio) indices from ten-minute resting EKG activity. Patients with RE showed significantly higher HF and lower LF power and lower LF/HF ratio than controls, independent of the epilepsy group, and did not show significant differences in any other autonomic index with respect to the two control groups. In RE, we found a negative relationship between both seizure load and frequency of sleep interictal EEG abnormalities with parasympathetic drive levels. These changes might be the expression of adaptive mechanisms to prevent the excessive sympathetic drive seen in patients with refractory epilepsies. © 2012 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropsychiatry services provide specialist input into the assessment and management of behavioral symptoms associated with a range of neurological conditions, including epilepsy. Despite the centrality of epilepsy to neuropsychiatry and the recent expansion of neuropsychiatry service provision, little is known about the clinical characteristics of patients with epilepsy who are routinely seen by a specialist neuropsychiatry service. This retrospective study filled this gap by retrospectively evaluating a naturalistic series of 60 consecutive patients with epilepsy referred to and assessed within a neuropsychiatry setting. Fifty-two patients (86.7%) had active epilepsy and were under the ongoing care of the referring neurologist for seizure management. The majority of patients (N = 42; 70.0%) had a diagnosis of localization-related epilepsy, with temporal lobe epilepsy as the most common epilepsy type (N = 37; 61.7%). Following clinical assessment, 39 patients (65.0%) fulfilled formal diagnostic criteria for at least one psychiatric disorder; nonepileptic attack disorder (N = 37; 61.7%), major depression (N = 23; 38.3%), and generalized anxiety disorder (N = 16; 26.7%) were the most commonly diagnosed comorbidities. The clinical characteristics of patients seen in specialist neuropsychiatry settings are in line with the results from previous studies in neurology clinics in terms of both epilepsy and psychiatric comorbidity. Our findings confirm the need for the development and implementation of structured care pathways for the neuropsychiatric aspects of epilepsy, with focus on comorbid nonepileptic attacks and affective and anxiety symptoms. This is of particular importance in consideration of the impact of behavioral symptoms on patients' health-related quality of life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Against a backdrop of recommendations for increasing access to and uptake of early surgical intervention for children with medically intractable epilepsy, it is important to understand how parents and professionals decide to put children forward for epilepsy surgery and what their decisional support needs are. Aim The aim of this study was to explore how parents and health professionals make decisions regarding putting children forward for pediatric epilepsy surgery. Methods Individual interviews were conducted with nine parents of children who had undergone pediatric epilepsy surgery at a specialist children's hospital and ten healthcare professionals who made up the children's epilepsy surgery service multidisciplinary healthcare team (MDT). Three MDT meetings were also observed. Data were analyzed thematically. Findings Four themes were generated from analysis of interviews with parents: presentation of surgery as a treatment option, decision-making, looking back, and interventions. Three themes were generated from analysis of interviews/observations with health professionals: triangulating information, team working, and patient and family perspectives. Discussion Parents wanted more information and support in deciding to put their child forward for epilepsy surgery. They attempted to balance the potential benefits of surgery against any risks of harm. For health professionals, a multidisciplinary approach was seen as crucial to the decision-making process. Advocating for the family was perceived to be the responsibility of nonmedical professionals. Conclusion Decision-making can be supported by incorporating families into discussions regarding epilepsy surgery as a potential treatment option earlier in the process and by providing families with additional information and access to other parents with similar experiences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation established a software-hardware integrated design for a multisite data repository in pediatric epilepsy. A total of 16 institutions formed a consortium for this web-based application. This innovative fully operational web application allows users to upload and retrieve information through a unique human-computer graphical interface that is remotely accessible to all users of the consortium. A solution based on a Linux platform with My-SQL and Personal Home Page scripts (PHP) has been selected. Research was conducted to evaluate mechanisms to electronically transfer diverse datasets from different hospitals and collect the clinical data in concert with their related functional magnetic resonance imaging (fMRI). What was unique in the approach considered is that all pertinent clinical information about patients is synthesized with input from clinical experts into 4 different forms, which were: Clinical, fMRI scoring, Image information, and Neuropsychological data entry forms. A first contribution of this dissertation was in proposing an integrated processing platform that was site and scanner independent in order to uniformly process the varied fMRI datasets and to generate comparative brain activation patterns. The data collection from the consortium complied with the IRB requirements and provides all the safeguards for security and confidentiality requirements. An 1-MR1-based software library was used to perform data processing and statistical analysis to obtain the brain activation maps. Lateralization Index (LI) of healthy control (HC) subjects in contrast to localization-related epilepsy (LRE) subjects were evaluated. Over 110 activation maps were generated, and their respective LIs were computed yielding the following groups: (a) strong right lateralization: (HC=0%, LRE=18%), (b) right lateralization: (HC=2%, LRE=10%), (c) bilateral: (HC=20%, LRE=15%), (d) left lateralization: (HC=42%, LRE=26%), e) strong left lateralization: (HC=36%, LRE=31%). Moreover, nonlinear-multidimensional decision functions were used to seek an optimal separation between typical and atypical brain activations on the basis of the demographics as well as the extent and intensity of these brain activations. The intent was not to seek the highest output measures given the inherent overlap of the data, but rather to assess which of the many dimensions were critical in the overall assessment of typical and atypical language activations with the freedom to select any number of dimensions and impose any degree of complexity in the nonlinearity of the decision space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation established a state-of-the-art programming tool for designing and training artificial neural networks (ANNs) and showed its applicability to brain research. The developed tool, called NeuralStudio, allows users without programming skills to conduct studies based on ANNs in a powerful and very user friendly interface. A series of unique features has been implemented in NeuralStudio, such as ROC analysis, cross-validation, network averaging, topology optimization, and optimization of the activation function’s slopes. It also included a Support Vector Machines module for comparison purposes. Once the tool was fully developed, it was applied to two studies in brain research. In the first study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. This analysis involved extracting features from the spectral power in the gamma frequencies. In the second application, a unique method was devised to link EEG recordings to epileptic and nonepileptic subjects. The contribution of this method consisted of developing a descriptor matrix that can be used to represent any EEG file regarding its duration and the number of electrodes. The first study showed that the inter-electrode mean of the spectral power in the gamma frequencies and its duration above a specific threshold performs better than the other frequencies in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of activity at over 99.99 % certainty. It was demonstrated that (1) the spectral power in the gamma frequencies is highly effective in locating seizures from EEG and (2) activity can be used to link EEG recordings to epileptic and non-epileptic subjects. These two studies required high computational load and could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio has been recently awarded a patent (US patent No. 7502763).