839 resultados para Environmentally friendly fund
Resumo:
In this thesis I offer two separate arguments for the creation of an environmentally friendly Christian theology. These arguments, although interconnected, are roughly divided into the main chapters of the thesis. I will begin in Chapter Two by offering a negative argument against the assumption that the natural world is sinful. In their article Hauerwas and Berkman suggest that the suffering of animals is both an example of the sinful state of the environment and a justification for human separation from an unholy natural environment. In response to this view I will argue in the second chapter that the suffering of animals can be seen as part of God's intentions for our world. Suffering, in both the human and the larger world, is not evidence of a fundamental flaw in natural systems. Instead, the cycle of death and life found in the natural world can be profoundly spiritual.
Resumo:
A new approach based on microextraction by packed sorbent (MEPS) and reversed-phase high-throughput ultra high pressure liquid chromatography (UHPLC) method that uses a gradient elution and diode array detection to quantitate three biologically active flavonols in wines, myricetin, quercetin, and kaempferol, is described. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (selectivity, linearity, sensitivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters such as the type of sorbent material (C2, C8, C18, SIL, and C8/SCX), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, on the MEPS performance. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). Under optimized conditions, excellent linearity View the MathML source(Rvalues2>0.9963), limits of detection of 0.006 μg mL−1 (quercetin) to 0.013 μg mL−1 (myricetin) and precision within 0.5–3.1% were observed for the target flavonols. The average recoveries of myricetin, quercetin and kaempferol for real samples were 83.0–97.7% with relative standard deviation (RSD, %) lower than 1.6%. The results obtained showed that the most abundant flavonol in the analyzed samples was myricetin (5.8 ± 3.7 μg mL−1). Quercetin (0.97 ± 0.41 μg mL−1) and kaempferol (0.66 ± 0.24 μg mL−1) were found in a lower concentration. The optimized MEPSC8 method was compared with a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis HLB) were used as reference. MEPSC8 approach offers an attractive alternative for analysis of flavonols in wines, providing a number of advantages including highest extraction efficiency (from 85.9 ± 0.9% to 92.1 ± 0.5%) in the shortest extraction time with low solvent consumption, fast sample throughput, more environmentally friendly and easy to perform.
Resumo:
A novel analytical approach, based on a miniaturized extraction technique, the microextraction by packed sorbent (MEPS), followed by ultrahigh pressure liquid chromatography (UHPLC) separation combined with a photodiode array (PDA) detection, has been developed and validated for the quantitative determination of sixteen biologically active phenolic constituents of wine. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (linearity, sensitivity, selectivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters on the MEPS performance such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). The wine bioactive phenolics were eluted by 250 μL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a HSS T3 analytical column (100 mm × 2.1 mm, 1.8 μm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method gave satisfactory results in terms of linearity with r2-values > 0.9986 within the established concentration range. The LOD varied from 85 ng mL−1 (ferulic acid) to 0.32 μg mL−1 ((+)-catechin), whereas the LOQ values from 0.028 μg mL−1 (ferulic acid) to 1.08 μg mL−1 ((+)-catechin). Typical recoveries ranged between 81.1 and 99.6% for red wines and between 77.1 and 99.3% for white wines, with relative standard deviations (RSD) no larger than 10%. The extraction yields of the MEPSC8/UHPLC–PDA methodology were found between 78.1 (syringic acid) and 99.6% (o-coumaric acid) for red wines and between 76.2 and 99.1% for white wines. The inter-day precision, expressed as the relative standard deviation (RSD%), varied between 0.2% (p-coumaric and o-coumaric acids) and 7.5% (gentisic acid) while the intra-day precision between 0.2% (o-coumaric and cinnamic acids) and 4.7% (gallic acid and (−)-epicatechin). On the basis of analytical validation, it is shown that the MEPSC8/UHPLC–PDA methodology proves to be an improved, reliable, and ultra-fast approach for wine bioactive phenolics analysis, because of its capability for determining simultaneously in a single chromatographic run several bioactive metabolites with high sensitivity, selectivity and resolving power within only 10 min. Preliminary studies have been carried out on 34 real whole wine samples, in order to assess the performance of the described procedure. The new approach offers decreased sample preparation and analysis time, and moreover is cheaper, more environmentally friendly and easier to perform as compared to traditional methodologies.
Resumo:
Nowadays, the search for new technologies that are able to follow the upcoming challenges in oil industry is a constant. Always trying properties improvements of the used materials, looking for the best performance and greater life time. Besides the search for technologies that show an improvement of performance, the search for materials environmentally correct along the whole production process. In Oil well cementing, this search for new technologies passes through the development of slurry systems that support these requests and that are also environmentally friendly. In this context, the use of geopolymer slurries is a great alternative route to cementing oil wells. Besides having good properties, comparable to Portland cement slurries, this alternative material releases much less CO2 gas in the production of their root materials when compared the production of Portland cement, which releases tons of CO2. In order to improve the properties of geopolymer slurries has been added Calcium Oxide, as observed in other studies that slurries where the Calcium is present the values of compressive strength is greater. The addition has been realized based in the CaO/SiO2 molar ratio of 0.05, 0.10 and 0.15. Have been performed compressive strength tests, thickening time, rheology and fliud loss control test of the slurries, following NBR 9831, as well as the physical chemical characterization of XRD, SEM and TG. Has been observed in most of the tests the slurries follow a tendency until the ratio of 0.10, which inverses in the ratio 0.15. This behavior can be explained by two phenomena that occur simultaneously, the first one is the break of the polymer chains and a consequent increase in molucules mobility, which prevails until the ratio of 0.1, and the second is possible approach of the chains due to the capacity of the calcium ions stabilize the charges of two different aluminum. There is only one linearity in the mechanical behavior that can be attributed to the appereance of the C-S-H phase. Based on this, it is concluded that the phenomenon of breaking the polymer chains predominates until the ratio of 0.1, causing an increase of the filtrate volume, lower rheological parameters and increasing thickening time. From the ratio of 0.15 the approach of the chains predominates, and the behavior is reversed
Resumo:
The synthesis of zeolites from natural sources of silicon and aluminum are promising alternative routes to obtain porous or zeolite MCM family. Such materials are typically used in catalytic processes and / or adsorption is to obtain new products or for separation and purification processes thereof. Environmental legislation is becoming stricter and requires the use of materials more efficient, aiming to achieve pollution prevention, by gas or liquid contaminants in the environment. In order to obtain a material with environmentally friendly features, this study aimed at the synthesis of zeolite A, from an amorphous sediment, diatomite, which is found in abundance in the northeast region of Brazil, may be substituted for conventional products the production of zeolite, involving higher costs. The methodology for obtaining the "Zeolite A" using as a source of silica and alumina diatomite is simple, since this is a source of silicon, not requiring therefore a structural driver, but also by heat treatment, only drying conventional to remove water. The "zeolite A" was obtained from diatomite, but as an intermediate step we obtained the sodalite. The characterization was made by the following techniques: EDX, XRD, FT-IR, SEM and determining a specific area by the BET method and the BJH method for checking the diameter of pores. By characterization of the obtained material was first demonstrated the achievement of sodalite and after modification of the same, there was obtained zeolite A
Resumo:
The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3
Resumo:
Space Science was built using a composite made of plaster, EPS, shredded tires, cement and water. Studies were conducted to thermal and mechanical resistance. Inside the mold EPS plates were placed in order to obtain a higher thermal resistance on the wall constructed, as well as to give it an end environmentally friendly in view of both the tire and the EPS occupy a large space in landfills and year need to be degraded when released into the environment. Compression tests were performed according to ABNT blocks to seal, measurements of the temperature variation in the external and internal walls using a laser thermometer and check the temperature of the indoor environment using a thermocouple attached to a digital thermometer. The experiments demonstrated the heat provided by the composite values from the temperature difference between the internal and external surfaces on the walls, reaching levels of 12.4 ° C and room temperature in the interior space of the Science of 33.3 ° C, remaining within the zone thermal comfort for hot climate countries. It was also demonstrated the proper mechanical strength of such a composite for sealing walls. The proposed use of the composite can contribute to reducing the extreme housing shortage in our country, producing popular homes at low cost and with little time to work
Resumo:
It presents a new type of insulation for ductwork hot water, which can be used in solar systems for heating water, which consists of a composite of different compositions based on plaster, cement and EPS ground, palm and water. This composite has as its main features easy assembly and manufacturing processes and low cost. Comparative results will be presented on the tests of materials and thermal tubes proposed. Four formulations were used to manufacture tubes with three diameters 70, 65 and 42mm. It was also tested conventionally used for elastomeric foam insulation to 110 ° C, for a comparative analysis with the composite pipe insulator proposed. It will demonstrate that the cost of manufacturing of such tubes is competitive with alternative elastomeric foam tested, but results of the composite tube to the temperature range studied, are lower. Another drawback of the composite insulator tube is its large mass. It would be important to test such a composite for greater levels of temperature to a diagnostic technique competitive with conventionally used insulators. A positive factor of using the proposed composite-tube would be the recycling of EPS so damaging to the environment, representing an environmentally friendly application of science
Resumo:
Currently, vegetable oils have been studied for bio-lubricants base that fits the new environmental standards. Since, in a world full of finite natural resources, mineral oils bring consequences to the environment due to its low biodegradability and toxicity, also it is important to consider that synthetic oils have a high cost The aim of this work is to obtain a biolubricant additived with oxide nanoparticles (ZnO and CuO) for better resistance to friction and wear, which is not toxic to the environment and have better adherence under boundary lubrication. The methodology consisted in the synthesis of bio-lubricants (soybean and sunflower base) by epoxidation reaction. Then, some physical-chemical analysis in bio-lubricants are made to characterize theses lubricants, such as, density, acidity, iodine value, viscosity, viscosity index. Later, the lubricants were additive with nanoparticles. The tribological performance was evaluated by the equipment HFRR (High Frequency Reciprocating Rig) consisting of a wear test ball-plan type. The characterization of wear analysis was performed by SEM / EDS. The results show that bio-lubricants may be synthesized by reaction of epoxidation with good conversion. Tribological point of view, the epoxidized oils are more effective than lubricant additived with the oxide nanoparticles, they had lower coefficients of friction and better rate of film formation in the study. However, because they are environmentally friendly, bio-lubricants gain the relevant importance in tribological field
Resumo:
Research for better performance materials in biomedical applications are constants. Thus recent studies aimed at the development of new techniques for modification of surfaces. The low pressure plasma has been highlighted for its versatility and for being environmentally friendly, achieving good results in the modification of physic chemical properties of materials. However, it is requires an expensive vacuum system and cannot able to generate superficial changes in specific regions. Furthermore, it is limits their use in polymeric materials and sensitive terms due to high process temperatures. Therefore, new techniques capable of generating cold plasma at atmospheric pressure (APPJ) were created. In order to perform surface treatments on biomaterials in specific regions was built a prototype capable of generating a cold plasma jet. The prototype plasma generator consists of a high voltage source, a support arm, sample port and a nozzle through which the ionized argon. The device was formed to a dielectric tube and two electrodes. This work was varied some parameters such as position between electrodes, voltage and electrical frequency to verify the behavior of glow discharges. The disc of titanium was polished and there was a surface modification. The power consumed, length, intensity and surface modifications of titanium were analyzed. The energy consumed during the discharges was observed by the Lissajous figure method. To check the length of the jets was realized with Image Pro Plus software. The modifications of the titanium surfaces were observed by optical microscopy (OM ) and atomic force microscopy (AFM ). The study showed that variations of the parameters such as voltage, frequency and geometric position between the electrodes influence the formation of the plasma jet. It was concluded that the plasma jet near room temperature and atmospheric pressure was able to cause modifications in titanium surface
Resumo:
The treatment of oil produced water and its implications are continually under investigation and several questions are related to this subject. In the Northeast Region Brazil, the onshore reservoirs are, in its majority, mature oil fields with high production of water. As this oil produced water has high levels of oil, it cannot be directly discarded into the environment because it represents a risk for contamination of soil, water, and groundwater, or even may cause harm to living bodies. Currently, polyelectrolytes that promote the coalescence of the oil droplets are used to remove the dispersed oil phase, enhancing the effectiveness of the flotation process. The non-biodegradability and high cost of polyelectrolytes are limiting factors for its application. On this context, it is necessary to develop studies for the search of more environmentally friendly products to apply in the flotation process. In this work it is proposed the modeling of the flotation process, in a glass column, using surfactants derived from vegetal oils to replace the polyelectrolytes, as well as to obtain a model that represents the experimental data. In addition, it was made a comparative study between the models described in the literature and the one developed in this research. The obtained results showed that the developed model presented high correlation coefficients when fitting the experimental data (R2 > 0.98), thus proving its efficiency in modeling the experimental data.
Resumo:
In recent decades, humanity has become increasingly concerned with environmental problems. Proofs of this are increasing initiatives in civil society organizations, private institutions and government actions, either local, state or national actions to promote environmental protection. The goal of this research is to contribute to the formation of citizens more aware of their responsibilities to sustainable development issues, simultaneously to their learning of physics in the secondary school. Thus, we have designed a research project that aims to evaluate the effectiveness of the adoption of the concept of sustainable development as a central theme in physics classes in high school. From this goal, we designed, implemented and evaluate lesson plans that aim not only to construct and apply the concept of energy, but also to understand their transformations and conservation law, as well as their processes of production, distribution and consume in the context of physical laws in which it is involved. Then, it was deliberately provided to students, during classes, to read, interpret and produce texts, by this way being able to think and start to have a critical view of the world around him, as well as absorb the energy concept and understand his occurrence in phenomena of nature and in technologies. The approach used for this was that constraining science, technology, society and environment - STSE. This teaching methodology has been applied in the IFRN Ipanguaçu campus, for students of two classes of first year of high school integrated course in agroecology and in technical computing. The survey results show the effectiveness of both methods with respect to the viewpoints of students in relation to the guidelines of sustainable development and the learning of physics content proposed. It is hoped with this dissertation to contribute to the formation of future men and women as citizens environmentally friendly, but also as a source of inspiration for teachers who wish to foster in its students such a critical position about civic education, from their classes
Resumo:
This article aims to analyse the introduction of environmental issues in the context of the production function, which has been referred to as the organisational area to lead corporate environmental management. With that purpose, the theoretical references for corporate environmental management and the necessary alterations in production function have been organised to include environmental aspects, especially in terms of product and process development, quality management, and logistics. Considering that this research field still lacks empirical evidence for Brazilian companies, four case studies were conducted using companies located in the country. The environmental management maturity level of those companies tends to follow the rate with which the environmental issue is introduced in production sub-areas, especially in the product development process. However, in most cases we found that the companies had difficulties in structuring the insertion of the environmental dimension in logistics. The final notes point out the distance observed between what is recommended by international literature and the reality of Brazilian companies in the challenge of making the production function environmentally friendly.
Resumo:
Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity the use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7 Nm(3)/h of hydrogen as feedstock of a 1 kW PEMFC the global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206 degrees C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700 degrees C. However, when the temperature attains 700 degrees C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700 degrees C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1 atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.
Resumo:
The search for new sources of environmentally friendly energy is growing every day. Among these alternative energies, biodiesel is a biofuel that has had prominence in world production. In Brazil, law 11.097, determine that all diesel sold in the country must be made by mixing diesel/biodiesel. The latter called BX, , where X represents the percent volume of biodiesel in the diesel oil, as specified by the ANP. In order to guarantee the quality of biodiesel and its mixtures, the main properties which should be controlled are the thermal and oxidative stability. These properties depend mainly of the chemical composition on the raw materials used to prepare the biodiesel. This dissertation aims to study the overall thermal and oxidative stability of biodiesel derived from cotton seed oil, sunflower oil, palm oil and beef tallow, as well as analyze the properties of the blends made from mineral oil and biodiesel in proportion B10. The main physical-chemical properties of oils and animal fat, their respective B100 and blends were determined. The samples were characterized by infrared and gas chromatography (GC). The study of thermal and oxidative stability were performed by thermogravimetry (TG), pressure differential scanning calorimeter (PDSC) and Rancimat. The obtained biodiesel samples are within the specifications established by ANP Resolution number 7/2008. In addition, all the blends and mineral diesel analyzed presented in conformed withthe ANP Regularion specifications number 15/2006. The obtained results from TG curves data indicated that the cotton biodiesel is the more stable combustible. In the kinetic study, we obtained the following order of apparent activation energy for the samples: biodiesel from palm oil > sunflower biodiesel > tallow biodiesel > cotton biodiesel. In terms of the oxidative stability, the two methods studied showed that biodiesel from palm oil is more stable then the tallow. Within the B100 samples studied only the latter were tound to be within the standard required by ANP resolution N° 7. Testing was carried out according to the EN14112. This higher stability its chemical composition