818 resultados para Environmental and sustainable performance
Resumo:
Purpose – This purpose of this paper is to introduce the new Smart and Sustainable Built Environment (SASBE) journal to readers by discussing the background and underlying principles of its establishment, the editorial visions, and the range of papers selected in this first issue. It will encourage readers and potential authors to consider the need for integrated approaches to sustainability problems, to take on emerging challenges in the built environment and to join the SASBE journal in finding and promoting optimum solutions. Design/methodology/approach – This paper explores the evolving nature of sustainability, the recent trends of sustainability endeavours in built environment and the current knowledge gaps. The need to bridge these gaps is then discussed in the context of suggested remedies and justifications. This leads to the development of a smart and sustainable built environment as a R&D philosophy for world researchers as part of their interactions with professional bodies and agencies such as CIB, UNEP and iiSBE, and the establishment of the SASBE journal. Findings – Sustainable development in the built environment requires holistic thinking and decision making and innovative solutions that enhance sustainability and result in mutually beneficial outcomes for all stakeholders. A dedicated forum, through the journal of SASBE, is much needed for the exploration, discussion, debate, and promotion of these integrated approaches. Originality/value – Through presenting an overview of the current issues and identifying gaps in the understanding and pursuit of sustainability in the built environment, this paper suggests potential areas for future research and practice as well as possible topics for authors to make new contributions.
Resumo:
Although there is a paucity of scientific support for the benefits of warm-up, athletes commonly warm up prior to activity with the intention of improving performance and reducing the incidence of injuries. The purpose of this study was to examine the role of warm-up intensity on both range of motion (ROM) and anaerobic performance. Nine males (age = 21.7 +/- 1.6 years, height = 1.77 +/- 0.04 m, weight = 80.2 +/- 6.8 kg, and VO2max = 60.4 +/- 5.4 ml/kg/min) completed four trials. Each trial consisted of hip, knee, and ankle ROM evaluation using an electronic inclinometer and an anaerobic capacity test on the treadmill (time to fatigue at 13 km/hr and 20% grade). Subjects underwent no warm-up or a warm-up of 15 minutes running at 60, 70 or 80% VO2max followed by a series of lower limb stretches. Intensity of warm-up had little effect on ROM, since ankle dorsiflexion and hip extension significantly increased in all warm-up conditions, hip flexion significantly increased only after the 80% VO2max warm-up, and knee flexion did not change after any warm-up. Heart rate and body temperature were significantly increased (p < 0.05) prior to anaerobic performance for each of the warm-up conditions, but anaerobic performance improved significantly only after warm-up at 60% VO2max (10%) and 70% VO2max (13%). A 15-minute warm-up at an intensity of 60-70% VO2max is therefore recommended to improve ROM and enhance subsequent anaerobic performance.
Resumo:
In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, application of such plasmonic nanostructures in biomedicine remains challenging due to the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nano-assemblies using molecular ligands were limited due to the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nano-assemblies. The ease and flexibility in tuning the particle size and number of branch ends of a HBP makes it an ideal candidate as a linker, as opposed to DNA, small organic molecules and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nano-assemblies and “hot-spot” density. We have shown that such solutions of stable HBP-gold nano-assemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared with non-aggregated NP systems. These Raman barcoded hybrid nano-assemblies, with further optimization of NP shape, size and “hot-spot” density, may find application as diagnostic tools in nanomedicine.
Resumo:
To protect the health information security, cryptography plays an important role to establish confidentiality, authentication, integrity and non-repudiation. Keys used for encryption/decryption and digital signing must be managed in a safe, secure, effective and efficient fashion. The certificate-based Public Key Infrastructure (PKI) scheme may seem to be a common way to support information security; however, so far, there is still a lack of successful large-scale certificate-based PKI deployment in the world. In addressing the limitations of the certificate-based PKI scheme, this paper proposes a non-certificate-based key management scheme for a national e-health implementation. The proposed scheme eliminates certificate management and complex certificate validation procedures while still maintaining security. It is also believed that this study will create a new dimension to the provision of security for the protection of health information in a national e-health environment.
Resumo:
This paper investigates the critical role of knowledge sharing (KS) in leveraging manufacturing activities, namely integrated supplier management (ISM) and new product development (NPD) to improve business performance (BP) within the context of Taiwanese electronic manufacturing companies. The research adopted a sequential mixed method research design, which provided both quantitative empirical evidence as well as qualitative insights, into the moderating effect of KS on the relationships between these two core manufacturing activities and BP. First, a questionnaire survey was administered, which resulted in a sample of 170 managerial and technical professionals providing their opinions on KS, NPD and ISM activities and the BP level within their respective companies. On the basis of the collected data, factor analysis was used to verify the measurement model, followed by correlation analysis to explore factor interrelationships, and finally moderated regression analyses to extract the moderating effects of KS on the relationships of NPD and ISM with BP. Following the quantitative study, six semi-structured interviews were conducted to provide qualitative in-depth insights into the value added from KS practices to the targeted manufacturing activities and the extent of its leveraging power. Results from quantitative statistical analysis indicated that KS, NPD and ISM all have a significant positive impact on BP. Specifically, IT infrastructure and open communication were identified as the two types of KS practices that could facilitate enriched supplier evaluation and selection, empower active employee involvement in the design process, and provide support for product simplification and the modular design process, thereby improving manufacturing performance and strengthening company competitiveness. The interviews authenticated many of the empirical findings, suggesting that in the contemporary manufacturing context KS has become an integral part of many ISM and NPD activities and when embedded properly can lead to an improvement in BP. The paper also highlights a number of useful implications for manufacturing companies seeking to leverage their BP through innovative and sustained KS practices.
Resumo:
In the increasingly competitive Australian tertiary education market, a consumer orientation is essential. This is particularly so for small regional campuses competing with larger universities in the state capitals. Campus management need to carefully monitor both the perceptions of prospective students within the catchment area, and the (dis)satisfaction levels of current students. This study reports the results of an exploratory investigation into the perceptions held of a regional campus, using two techniques that have arguably been underutilised in the education marketing literature. Repertory Grid Analysis, a technique developed almost fifty years ago, was used to identify attributes deemed salient to year 12 high school students at the time they were applying for university places. Importance-performance analysis (IPA), developed three decades ago, was then used to identify attributes that were determinant for a new cohort of first year undergraduate students. The paper concludes that group applications of Repertory Grid offer education market researchers a useful means for identifying attributes used by high school students to differentiate universities, and that IPA is a useful technique for guiding promotional decision making. In this case, the two techniques provided a quick, economical and effective snapshot of market perceptions, which can be used as a foundation for the development of an ongoing market research programme.
Resumo:
Catalytic decomposition is a very attractive way to convert tar components into H2, CO and other useful chemicals. The performance of Fe3Ni8/PG (palygorskite, PG) reduced in hydrogen at different temperatures for the catalytic decomposition of benzene has been assessed. Benzene was used as the model biomass tar. The effects of calcination atmosphere, temperatures and benzene concentration on catalytic cracking of benzene were measured. The results of XRD (X-Ray Diffraction), TEM (Transmission Electron Microscope), TPR (Temperature Program Reduction), TPSR (Temperature Program Surface Reduction), TC (Total Carbon), the reactivity component and reaction mechanism over Fe3Ni8/PG for catalytic cracking of benzene are discussed. The results showed particles of awaruite (Fe, Ni) about 2–30 nm were found on the surface of palygorskite by TEM when the calcination temperature was 600 °C. Particles with size smaller than 30 nm were obtained on all prepared Fe3Ni8/PG catalysts as shown by XRD. The nanoparticles proved to be the reactive component for catalytic cracking of benzene and the increase of active particle size caused the decrease in the reactivity of Fe3Ni8/PG. Fe3Ni8/PG annealed in hydrogen at 600 °C was proved to have the best reactivity in experiments (45% hydrogen yield). High concentration benzene (448 g/m3) accelerated the formation of carbon deposition. However, iron oxide decreases carbon deposition and increases the stability of catalyst for catalytic cracking of benzene. The application of Fe3Ni8/PG catalysts was proved a very effective catalyst for the catalytic cracking of benzene.
Resumo:
Manufacturing companies have strived to enhance managerial and technical capabilities to improve business performance. Building these capabilities requires effective share of knowledge - the strategic resource. Specifically, knowledge sharing (KS) between different manufacturing departments can improve manufacturing processes since leveraging organisational knowledge plays an enssential role in achieving competitive advantage. This paper presents an empirical investigation into the impact of KS on the effectiveness of supply chain management (SCM) and the product development process (PDP) in achieving desired business performance (BP). A questionnaire survey was administered from electronic manufacturing companies operating in Taiwan. 168 valid responses were received and used to statistically examine the relationships between the concepts (SCM, PDP, KS, BP). The study findings reveal that within the Taiwanese electronic manufacturing companies KS is an essential enabler for facilitating the effectiveness of SCM and PDP in achieving desired BP.
Resumo:
Research in construction innovation highlights construction industry as having many barriers and resistance to innovations and suggests that it needs champions. A hierarchical structural model is presented, to assess the impact of the role of the project manager (PM) on the levels of innovation and project performance. The model adopts the structural equation modelling technique and uses the survey data collected from PMs and project team members working for general contractors in Singapore. The model fits well to the observed data, accounting for 24%, 37% and 49% of the variance in championing behaviour, the level of innovation and project performance, respectively. The results of this study show the importance of the championing role of PMs in construction innovation. However, in order to increase their effectiveness, such a role should be complemented by their competency and professionalism, tactical use of influence tactics, and decision authority. Moreover, senior management should provide adequate resources and a sustained support to innovation and create a conducive environment or organizational culture that nurtures and facilitates the PM’s role in the construction project as a champion of innovation.
Resumo:
The existence of the Macroscopic Fundamental Diagram (MFD), which relates network space-mean density and flow, has been shown in urban networks under homogeneous traffic conditions. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. The key requirements for the well-defined MFD is the homogeneity of the area wide traffic condition, which is not universally expected in real world. For the practical application of the MFD concept, several researchers have identified the influencing factors for network homogeneity. However, they did not explicitly take drivers’ behaviour under real time information provision into account, which has a significant impact on the shape of the MFD. This research aims to demonstrate the impact of drivers’ route choice behaviour on network performance by employing the MFD as a measurement. A microscopic simulation is chosen as an experimental platform. By changing the ratio of en-route informed drivers and pre-trip informed drivers as well as by taking different route choice parameters, various scenarios are simulated in order to investigate how drivers’ adaptation to the traffic congestion influences the network performance and the MFD shape. This study confirmed and addressed the impact of information provision on the MFD shape and highlighted the significance of the route choice parameter setting as an influencing factor in the MFD analysis.
Resumo:
Increasing awareness of the benefits of stimulating entrepreneurial behaviour in small and medium enterprises has fostered strong interest in innovation programs. Recently many western countries have invested in design innovation for better firm performance. This research presents some early findings from a study of companies that participated in a holistic approach to design innovation, where the outcomes include better business performance and better market positioning in global markets. Preliminary findings from in-depth semi-structured interviews indicate the importance of firm openness to new ways of working and to developing new processes of strategic entrepreneurship. Implications for theory and practice are discussed.
Resumo:
Background Individual exposure to ultraviolet radiation (UVR) is challenging to measure, particularly for diseases with substantial latency periods between first exposure and diagnosis of outcome, such as cancer. To guide the choice of surrogates for long-term UVR exposure in epidemiologic studies, we assessed how well stable sun-related individual characteristics and environmental/meteorological factors predicted daily personal UVR exposure measurements. Methods We evaluated 123 United States Radiologic Technologists subjects who wore personal UVR dosimeters for 8 hours daily for up to 7 days (N = 837 days). Potential predictors of personal UVR derived from a self-administered questionnaire, and public databases that provided daily estimates of ambient UVR and weather conditions. Factors potentially related to personal UVR exposure were tested individually and in a model including all significant variables. Results The strongest predictors of daily personal UVR exposure in the full model were ambient UVR, latitude, daily rainfall, and skin reaction to prolonged sunlight (R2 = 0.30). In a model containing only environmental and meteorological variables, ambient UVR, latitude, and daily rainfall were the strongest predictors of daily personal UVR exposure (R2 = 0.25). Conclusions In the absence of feasible measures of individual longitudinal sun exposure history, stable personal characteristics, ambient UVR, and weather parameters may help estimate long-term personal UVR exposure.
Resumo:
This chapter contains sections titled: Introduction ICZM and sustainable development of coastal zone International legal framework for ICZM Implementation of international legal obligations in domestic arena Concluding remarks References
Resumo:
In the modern built environment, building construction and demolition consume a large amount of energy and emits greenhouse gasses due to widely used conventional construction materials such as reinforced and composite concrete. These materials consume high amount of natural resources and possess high embodied energy. More energy is required to recycle or reuse such materials at the cessation of use. Therefore, it is very important to use recyclable or reusable new materials in building construction in order to conserve natural resources and reduce the energy and emissions associated with conventional materials. Advancements in materials technology have resulted in the introduction of new composite and hybrid materials in infrastructure construction as alternatives to the conventional materials. This research project has developed a lightweight and prefabricatable Hybrid Composite Floor Plate System (HCFPS) as an alternative to conventional floor system, with desirable properties, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fiber Reinforced Cement (GRC) and steel laminates at tensile regions. This research work explored the structural adequacy and performance characteristics of hybridised GRC, PU and steel laminate for the development of HCFPS. Performance characteristics of HCFPS were investigated using Finite Element (FE) method simulations supported by experimental testing. Parametric studies were conducted to develop the HCFPS to satisfy static performance using sectional configurations, spans, loading and material properties as the parameters. Dynamic response of HCFPS floors was investigated by conducting parametric studies using material properties, walking frequency and damping as the parameters. Research findings show that HCFPS can be used in office and residential buildings to provide acceptable static and dynamic performance. Design guidelines were developed for this new floor system. HCFPS is easy to construct and economical compared to conventional floor systems as it is lightweight and prefabricatable floor system. This floor system can also be demounted and reused or recycled at the cessation of use due to its component materials.