970 resultados para Environment degradation
Resumo:
One of the key issues facing public asset owners is the decision of refurbishing aged built assets. This decision requires an assessment of the “remaining service life” of the key components in a building. The remaining service life is significantly dependent upon the existing condition of the asset and future degradation patterns considering durability and functional obsolescence. Recently developed methods on Residual Service Life modelling, require sophisticated data that are not readily available. Most of the data available are in the form of reports prior to undertaking major repairs or in the form of sessional audit reports. Valuable information from these available sources can serve as bench marks for estimating the reference service life. The authors have acquired similar informations from a public asset building in Melbourne. Using these informations, the residual service life of a case study building façade has been estimated in this paper based on state-of-the-art approaches. These estimations have been evaluated against expert opinion. Though the results are encouraging it is clear that the state-of-the-art methodologies can only provide meaningful estimates provided the level and quality of data are available. This investigation resulted in the development of a new framework for maintenance that integrates the condition assessment procedures and factors influencing residual service life
Resumo:
Capital works procurement and its regulatory policy environment within a country can be complex entities. For example, by virtue of Australia’s governmental division between the Commonwealth, states and local jurisdictions and the associated procurement networks and responsibilities at each level, the tendering process is often convoluted. There are four inter-related key themes identified in the literature in relation to procurement disharmony, including decentralisation, risk & risk mitigation, free trade & competition, and tendering costs. This paper defines and discusses these key areas of conflict that adversely impact upon the business environments of industry through a literature review, policy analysis and consultation with capital works procurement stakeholders. The aim of this national study is to identify policy differences between jurisdictions in Australia, and ascertain whether those differences are a barrier to productivity and innovation. This research forms an element of a broader investigation with an aim of developing efficient, effective and nationally harmonised procurement systems. Keywords: capital works, procurement policy reform Acknowledgement: The research described in this paper carried out by the Australian Cooperative Research Centre for Construction Innovation.
Resumo:
As regulators, governments are often criticised for over‐regulating industries. This research project seeks to examine the regulation affecting the construction industry in a federal system of government. It uses a case study of the Australian system of government to focus on the question of the implications of regulation in the construction industry. Having established the extent of the regulatory environment, the research project considers the costs associated with this environment. Consequently, ways in which the regulatory burden on industry can be reduced are evaluated. The Construction Industry Business Environment project is working with industry and government agencies to improve regulatory harmonisation in Australia, and thereby reduce the regulatory burden on industry. It is found that while taxation and compliance costs are not likely to be reduced in the short term, costs arising from having to adapt to variation between regulatory regimes in a federal system of government, seem the most promising way of reducing regulatory costs. Identifying and reducing adaptive costs across jurisdictional are argued to present a novel approach to regulatory reform.
Resumo:
The requirement to monitor the rapid pace of environmental change due to global warming and to human development is producing large volumes of data but placing much stress on the capacity of ecologists to store, analyse and visualise that data. To date, much of the data has been provided by low level sensors monitoring soil moisture, dissolved nutrients, light intensity, gas composition and the like. However, a significant part of an ecologist’s work is to obtain information about species diversity, distributions and relationships. This task typically requires the physical presence of an ecologist in the field, listening and watching for species of interest. It is an extremely difficult task to automate because of the higher order difficulties in bandwidth, data management and intelligent analysis if one wishes to emulate the highly trained eyes and ears of an ecologist. This paper is concerned with just one part of the bigger challenge of environmental monitoring – the acquisition and analysis of acoustic recordings of the environment. Our intention is to provide helpful tools to ecologists – tools that apply information technologies and computational technologies to all aspects of the acoustic environment. The on-line system which we are building in conjunction with ecologists offers an integrated approach to recording, data management and analysis. The ecologists we work with have different requirements and therefore we have adopted the toolbox approach, that is, we offer a number of different web services that can be concatenated according to need. In particular, one group of ecologists is concerned with identifying the presence or absence of species and their distributions in time and space. Another group, motivated by legislative requirements for measuring habitat condition, are interested in summary indices of environmental health. In both case, the key issues are scalability and automation.
Resumo:
We love the automobile and the independence that it gives us. We are more mobile than we have ever been before in recorded history. In Australia 80% of journeys are by private motor vehicle. But it is becoming increasingly obvious that this era has a very limited lifespan. Fuel prices have skyrocketed recently with no end in sight. In spite of massive amounts of road construction, our cities are becoming increasingly congested. We desperately need to address climate change and the automobile is a major contributor. Carbon trading schemes will put even more upward pressure on fuel prices. At some point in the near future, most of us will need to reconsider our automobile usage whether we like it or not. The time to plan for the future is now. But what will happen to our mobility when access to cheap and available petroleum becomes a thing of the past? Will we start driving electric/hydrogen/ethanol vehicles? Or will we flock to public transport? Will our public transport systems cope with a massive increase in demand? Will thousands of people take to alternatives such as bicycles? If so, where do we put them? How do we change our roads to cope? How do we change our buildings to suit? Will we need recharging stations in our car park for example? Some countries are less reliant on the car than others e.g. Holland and Germany. How can the rest of the world learn from them? This paper discusses many of the likely outcomes of the inevitable shift away from society’s reliance on petroleum and examines the expected impact on the built environment. It also looks at ways in which the built environment can be planned to help ease the transition to a fossil free world. 1.
Resumo:
The Way-fi nding in the Built Environment project is a worldwide review identifying those way-fi nding systems and technologies that could be used to make it easier and safer for people with a sensory impairment (and in particular a vision impairment) to fi nd their way around buildings and large public spaces. The project makes recommendations on how these technologies and systems may be incorporated, by law or otherwise, into Australia’s building and construction practice. Way-fi nding aims to ensure that people with a sensory impairment know where they are in a building or an environment, where their desired location is, and how to get there from their present location. It is unlawful to discriminate against people with a disability under the Disability Discrimination Act 1992.
Resumo:
Properly designed decision support environments encourage proactive and objective decision making. The work presented in this paper inquires into developing a decision support environment and a tool to facilitate objective decision making in dealing with road traffic noise. The decision support methodology incorporates traffic amelioration strategies both within and outside the road reserve. The project is funded by the CRC for Construction Innovation and conducted jointly by the RMIT University and the Queensland Department of Main Roads (MR) in collaboration with the Queensland Department of Public Works, Arup Pty Ltd., and the Queensland University of Technology. In this paper, the proposed decision support framework is presented in the way of a flowchart which enabled the development of the decision support tool (DST). The underpinning concept is to establish and retain an information warehouse for each critical road segment (noise corridor) for a given planning horizon. It is understood that, in current practice, some components of the approach described are already in place but not fully integrated and supported. It provides an integrated user-friendly interface between traffic noise modeling software, noise management criteria and cost databases.
Resumo:
Channel measurements and simulations have been carried out to observe the effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity. An in-house built MIMO-OFDM packet transmission demonstrator equipped with four transmitters and four receivers has been utilized to perform channel measurements at 5.2 GHz. Variations in the channel capacity dynamic range have been analysed for 1 to 10 pedestrians and different antenna arrays (2 × 2, 3 × 3 and 4 × 4). Results show a predicted 5.5 bits/s/Hz and a measured 1.5 bits/s/Hz increment in the capacity dynamic range with the number of pedestrian and the number of antennas in the transmitter and receiver array.
Resumo:
The Cooperative Research Centre for Construction Innovation1 (hereafter called Construction Innovation) supports the notion of the establishment of a Sustainability Charter for Australia and is interested in working collaboratively to achieve this outcome. A number of challenges need to be addressed to develop this Charter. This submission outlines these challenges and possible responses to them by a Sustainability Commission.
Resumo:
PROJECT BRIEF Information provided by the Built Environment Industry Innovation Council as background to this project includes the following information on construction and innovation within the industry. • The construction industry contributes around $67 billion to GDP and employs around 970,000 and generates exports of nearly $150 million. • The industry has one of the lowest innovation rates of any industry in Australia, ranking third last across all Australian industries in terms of its proportion of business expenditure on innovation, and second last in terms of the proportion of income generated from innovation (ABS, 2006). • Key innovation challenges include addressing energy and water use efficiency, and housing costs in preparing for the implementation of the Carbon Pollution Reduction Scheme. The sector will need to build its capability and capacity to deliver the technical and operational expertise required.The broader Built Environment Innovation Project aims to address the following two objectives: 1. Identify current innovative practice across the Built Environment industry. 2. Develop a knowledge exchange strategy for this information to be disseminated to all industry stakeholders. Industry practice issues are critical to the built environment industry’s ability to innovate, and the BRITE project from the CRC for Construction Innovation has previously undertaken work to identify the key factors that drive innovation. Part 1 of the current project aims to extend this work by conducting a stocktake of current and emerging innovative practices within the built environment industry. Part 2 of the project addresses the second of these objectives, that is, to recommend a knowledge exchange strategy for promoting the wider uptake of innovative practices that makes the information identified in Part 1 of the study (on emerging innovative practices) accessible to Australian built environment industry stakeholders. The project brief was for the strategy to include a mechanism to enable this information resource to be updated as new initiatives/practices are developed. A better understanding of the built environment industry’s own knowledge infrastructure also has the potential to enhance innovation outcomes for the industry. This project will develop a coordinated knowledge exchange strategy, informed by the best available information on current innovation practices within the industry and suggest directions for gaining a better understanding of: the industry contexts that lead to innovative practices; the industry (including enterprise and individual) drivers for innovation; and appropriate knowledge exchange pathways for delivering future industry innovation. A deliverable of Part 2 will be a recommendation for a knowledge exchange strategy to accelerate adoption of innovative practices in the built environment industry, including resource implications and how such a recommendation could be taken forward as an ongoing resource.
Resumo:
Within nursing, there is a strong demand for high-quality, cost-effective clinical education experiences that facilitate student learning in the clinical setting The clinical learning environment (CLE) is the interactive network of forces within the clinical setting that influence the students'clinical learning outcomes The identification of factors that characterize CLE could lead to strategies that foster the factors most predictive of desirable student learning outcomes and ameliorate those which may have a negative impact on student outcomes The CLE scale is a 23-item instrument with five subscales staff–student relationships, nurse manager commitment, patient relationships, interpersonal relationships, and student satisfaction These factors have strong substantive face validity and construct validity, as determined by confirmatory factor analysis Reliability coefficients range from high (0 85) to marginal (0 63) The CLE scale provides the educator with a valid and reliable instrument to evaluate affectively relevant factors in the CLE, direct resources to areas where improvement may be required, and nurture those areas functioning well It will assist in the application of resources in a cost-effective, efficient, productive manner, and will ensure that the clinical learning experience offers the nursing student the best possible learning outcomes
Resumo:
Due to the popularity of modern Collaborative Virtual Environments, there has been a related increase in their size and complexity. Developers therefore need visualisations that expose usage patterns from logged data, to understand the structures and dynamics of these complex environments. This chapter presents a new framework for the process of visualising virtual environment usage data. Major components, such as an event model, designer task model and data acquisition infrastructure are described. Interface and implementation factors are also developed, along with example visualisation techniques that make use of the new task and event model. A case study is performed to illustrate a typical scenario for the framework, and its benefits to the environment development team.
Resumo:
This paper proposes a new prognosis model based on the technique for health state estimation of machines for accurate assessment of the remnant life. For the evaluation of health stages of machines, the Support Vector Machine (SVM) classifier was employed to obtain the probability of each health state. Two case studies involving bearing failures were used to validate the proposed model. Simulated bearing failure data and experimental data from an accelerated bearing test rig were used to train and test the model. The result obtained is very encouraging and shows that the proposed prognostic model produces promising results and has the potential to be used as an estimation tool for machine remnant life prediction.
Resumo:
Isolating the impact of a colour, or a combination of colours, is extremely difficult to achieve because it is difficult to remove other environmental elements such as sound, odours, light, and occasion from the experience of being in a place. In order to ascertain the impact of colour on how we interpret the world in day to day situations, the current study records participant responses to achromatic scenes of the built environment prior to viewing the same scene in colour. A number of environments were photographed in colour or copied from design books; and copies of the images saved as both colour and black/grey/white. An overview of the study will be introduced by firstly providing examples of studies which have linked colour to meaning and emotions. For example, yellow is said to be connected to happiness1 ; or red evokes feelings of anger2 or passion. A link between colour and the way we understand and/or feel is established however, there is a further need for knowledge of colour in context. In response to this need, the current achromatic/chromatic environmental study will be described and discussed in light of the findings. Finally, suggestions for future research are posed. Based on previous research the authors hypothesised that a shift in environmental perception by participants would occur. It was found that the impact of colour includes a shift in perception of aspects such as its atmosphere and youthfulness. Through studio-class discussions it was also noted that the predicted age of the place, the function, and in association, the potential users when colour was added (or deleted) were often challenged. It is posited that the ability of a designer (for example, interior designer, architect, or landscape architect) to design for a particular target group—user and/or clients will be enhanced through more targeted studies relating colour in situ. The importance of noting the perceptual shift for the participants in our study, who were young designers, is the realisation that colour potentially holds the power to impact on the identity of an architectural form, an interior space, and/or particular elements such as doorways, furniture settings, and the like.