737 resultados para Engineering Education--Demonstrations
Resumo:
As technology continues to become more accessible, miniaturised and diffused into the environment, the potential of wearable technology to impact our lives in significant ways becomes increasingly viable. Wearables afford unique interaction, communication and functional capabilities between users, their environment as well as access to information and digital data. Wearables also demand an inter-disciplinary approach and, depending on the purpose, can be fashioned to transcend cultural, national and spatial boundaries. This paper presents the Cloud Workshop project based on the theme of ‘Wearables and Wellbeing; Enriching connections between citizens in the Asia-Pacific region’, initiated through a cooperative partnership between Queensland University of Technology (QUT), Hong Kong Baptist University (HKBU) and Griffith University (GU). The project was unique due to its inter-disciplinary, inter-cultural and inter-national scope that occurred simultaneously between Australia and Hong Kong.
Resumo:
This commentary was stimulated by Yeping Li's first editorial (2014) citing one of the journal's goals as adding multidisciplinary perspectives to current studies of single disciplines comprising the focus of other journals. In this commentary I argue for a greater focus on STEM integration, with a more equitable representation of the four disciplines in studies purporting to advance STEM learning. The STEM acronym is often used in reference to just one of the disciplines, commonly science. Although the integration of STEM disciplines is increasingly advocated in the literature, studies that address multiple disciplines appear scant with mixed findings and inadequate directions for STEM advancement. Perspectives on how discipline integration can be achieved are varied, with reference to multidisciplinary, interdisciplinary, and transdisciplinary approaches adding to the debates. Such approaches include core concepts and skills being taught separately in each discipline but housed within a common theme; the introduction of closely linked concepts and skills from two or more disciplines with the aim of deepening understanding and skills; and the adoption of a transdisciplinary approach, where knowledge and skills from two or more disciplines are applied to real-world problems and projects with the aim of shaping the total learning experience. Research that targets STEM integration is an embryonic field with respect to advancing curriculum development and various student outcomes. For example, we still need more studies on how student learning outcomes arise not only from different forms of STEM integration but also from the particular disciplines that are being integrated. As noted in this commentary, it seems that mathematics learning benefits less than the other disciplines in programs claiming to focus on STEM integration. Factors contributing to this finding warrant more scrutiny. Likewise, learning outcomes for engineering within K-12 integrated STEM programs appear under-researched. This commentary advocates a greater focus on these two disciplines within integrated STEM education research. Drawing on recommendations from the literature, suggestions are offered for addressing the challenges of integrating multiple disciplines faced by the STEM community.
Resumo:
Engineering education quality embraces the activities through which a technical institution satisfies itself that the quality of education it provides and standards it has set are appropriate and are being maintained. There is a need to develop a standardised approach to most aspects of quality assurance for engineering programmes which is sufficiently well defined to be accepted for all assessments.We have designed a Technical Educational Quality Assurance and Assessment (TEQ-AA) System, which makes use of the information on the web and analyzes the standards of the institution. With the standards as anchors for definition, the institution is clearer about its present in order to plan better for its future and enhancing the level of educational quality.The system has been tested and implemented on the technical educational Institutions in the Karnataka State which usually host their web pages for commercially advertising their technical education programs and their Institution objectives, policies, etc., for commercialization and for better reach-out to the students and faculty. This helps in assisting the students in selecting an institution for study and to assist in employment.
Resumo:
This paper reflects on the motivation, method and effectiveness of teaching leadership and organisational change to graduate engineers. Delivering progress towards sustainable development requires engineers who are aware of pressing global issues (such as resource depletion, climate change, social inequity and an interdependent economy) since it is they who deliver the goods and services that underpin society within these constraints. In recognition of this fact the Cambridge University MPhil in Engineering for Sustainable Development has focussed on educating engineers to become effective change agents in their professional field with the confidence to challenge orthodoxy in adopting traditional engineering solutions. This paper reflects on ten years of delivering this course to review how teaching change management and leadership aspects of the programme have evolved and progressed over that time. As the students on this professional practice have often extensive experience as practising engineers and scientists, they have learned the limitations of their technical background when solving complex problems. Students often join the course recognising their need to broaden their knowledge of relevant cross-disciplinary skills. The course offers an opportunity for these early to mid-career engineers to explore an ethical and value-based approach to bringing about effective change in their particular sectors and organisations. This is achieved through action learning assignments in combination with reflections on the theory of change to enable students to equip themselves with tools that help them to be effective in making their professional and personal life choices. This paper draws on feedback gathered from students during their participation on the course and augments this with alumni reflections gathered some years after their graduation. These professionals are able to look back on their experience of the taught components and reflect on how they have been able to apply this key learning in their subsequent careers.
Resumo:
This paper discusses innovations in curriculum development in the Department of Engineering at the University of Cambridge as a participant in the Teaching for Learning Network (TFLN), a teaching and learning development initiative funded by the Cambridge-MIT Institute a pedagogic collaboration and brokerage network. A year-long research and development project investigated the practical experiences through which students traditionally explore engineering disciplines, apply and extend the knowledge gained in lectures and other settings, and begin to develop their professional expertise. The research project evaluated current practice in these sessions and developed an evidence-base to identify requirements for new activities, student support and staff development. The evidence collected included a novel student 'practice-value' survey highlighting effective practice and areas of concern, classroom observation of practicals, semi-structured interviews with staff, a student focus group and informal discussions with staff. Analysis of the data identified three potentially 'high-leverage' strategies for improvement: development of a more integrated teaching framework, within which practical work could be contextualised in relation to other learning; a more transparent and integrated conceptual framework where theory and practice were more closely linked; development of practical work more reflective of the complex problems facing professional engineers. This paper sets out key elements of the evidence collected and the changes that have been informed by this evidence and analysis, leading to the creation of a suite of integrated practical sessions carefully linked to other course elements and reinforcing central concepts in engineering, accompanied by a training and support programme for teaching staff.
Resumo:
This paper reflects on the motivation, method and effectiveness of teaching leadership and organisational change to graduate engineers. Delivering progress towards sustainable development requires engineers who are aware of pressing global issues (such as resource depletion, climate change, social inequity and an interdependent economy) since it is they who deliver the goods and services that underpin society within these constraints. They also must understand how to implement change in the organisations within which they will work. In recognition of this fact the Cambridge University MPhil in Engineering for Sustainable Development has focussed on educating engineers to become effective change agents in their professional field with the confidence to challenge orthodoxy in adopting traditional engineering solutions. This paper reflects on ten years of delivering a special module to review how teaching change management and leadership aspects of the programme have evolved and progressed over that time. As the students who embark on this professional practice have often extensive experience as practising engineers and scientists, many have already learned the limitations of their technical background when solving complex problems. Students often join the course recognising their need to broaden their knowledge of relevant cross-disciplinary skills. The programme offers an opportunity for these early to mid-career engineers to explore an ethical and value-based approach to bringing about effective change in their particular sectors and organisations. This is achieved through action learning assignments in combination with reflections on the theory of change to enable students to equip themselves with tools that help them to be effective in making their professional and personal life choices. This paper draws on feedback gathered from students during their participation on the programme and augments this with alumni reflections gathered some years after their graduation. These professionals are able to look back on their experience of the taught components and reflect on how they have been able to apply this key learning in their subsequent careers. Copyright © 2012 September.
Resumo:
This paper presents some observations on how computer animation was used in the early years of a degree program in Electrical and Electronic Engineering to enhance the teaching of key skills and professional practice. This paper presents the results from two case studies. First, in a first year course which seeks to teach students how to manage and report on group projects in a professional way. Secondly, in a technical course on virtual reality, where the students are asked to use computer animation in a way that subliminally coerces them to come to terms with the fine detail of the mathematical principles that underlie 3D graphics, geometry, etc. as well as the most significant principles of computer architecture and software engineering. In addition, the findings reveal that by including a significant element of self and peer review processes into the assessment procedure students became more engaged with the course and achieved a deeper level of comprehension of the material in the course.