891 resultados para Emergence Traps
Resumo:
The industrial landscape is becoming increasingly complex and dynamic, with innovative technologies stimulating the emergence of new industries and business models. This paper presents a preliminary framework for mapping industrial emergence, based on roadmapping principles, in order to understand the nature and characteristics of such phenomena. The focus at this stage is on historical examples of industrial emergence, with the preliminary framework based on observations from 20 'quick scan' maps, one of which is used to illustrate the framework. The learning from these historical cases, combined with further industrial consultation and literature review, will be used to develop practical methods for strategy and policy application. The paper concludes by summarising key learning points and further work needed to achieve these outcomes. © 2009 PICMET.
Resumo:
The need to stimulate, identify and nurture new industries is a prominent challenge in advanced economies. While basic science represents a valuable source of new ideas and opportunities, it can often take decades before this science finally finds application in the market. While numerous studies have to date focused on aspects of industrial evolution, (e.g. innovation, internationalisation, new product introduction, technological lifecycles and emerging technologies), far fewer have focused on technology-based industrial emergence. It is clear that if assistance is to be provided to firms and industrial policymakers attempting to navigate industrial emergence then we need an improved understanding of the characteristics and dynamics of this phenomenon. Accordingly, this paper reviews published work from a range of disparate disciplines - evolutionary theory, social construction of technology (SCOT), complexity science, industrial dynamics and technology management - to identify these dynamics. Through this review we conceptualise industrial emergence as a co-evolutionary process in which nonlinear dynamics operate. Industrial emergence is sensitive to the initial availability of resources and the market applications, with growth dependent on the supply-demand coupling, agents' actions to reduce uncertainty and catalytic events. Through synthesizing these key dynamics we go on to propose a conceptual model for industrial emergence. © 2010 IEEE.
Resumo:
Result of experimental lobster fishing with three new designs, namely rectangular, Australian pot and ink-well traps at Muttam, Kadiapatnam, Colachal, Enayam and Vizhinjam, south-west coast of India during 1979-80 are reported. Preliminary studies show that Australian pot and rectangular traps as more efficient to the ink-well type.
Resumo:
The mean extent of trial of an improved design of lobster trap by 45 fishermen was 26.46. The cost of local traps and number of seasons used were both significantly negatively associated with the extent of trials; its relationship with the annual catch by indigenous trap approached significance. These three variables accounted for 59% of the variance in the extent of trial.
Resumo:
A number of alternative designs are presented for Penning ion traps suitable for quantum information processing (QIP) applications with atomic ions. The first trap design is a simple array of long straight wires, which allows easy optical access. A prototype of this trap has been built to trap Ca+ and a simple electronic detection scheme has been employed to demonstrate the operation of the trap. Another trap design consists of a conducting plate with a hole in it situated above a continuous conducting plane. The final trap design is based on an array of pad electrodes. Although this trap design lacks the open geometry of the other traps described above, the pad design may prove useful in a hybrid scheme in which information processing and qubit storage take place in different types of trap. The behaviour of the pad traps is simulated numerically and techniques for moving ions rapidly between traps are discussed. Future experiments with these various designs are discussed. All of the designs lend themselves to the construction of multiple trap arrays, as required for scalable ion trap QIP.
Resumo:
New investors in aquaculture probably know that they can make mistakes as they continue to operate their farms. Whether the mistakes happen immediately or not are risks they take as long as the mistakes are manageable and can easily be corrected. But many aquaculturists who have long been in the business say that there are costly mistakes that can wipe out one's investment. This paper is based on interviews with experienced aquaculturists and some popular articles from other aquaculture newsletters (Lindberg and Pryor on ways to lose money in aquaculture, Proceedings, Sustainable Aquaculture 95) and shares some insights regarding mistakes that may be hidden to new investors but obvious to experienced aquaculturists.