994 resultados para Embedded Control Architectures
Resumo:
In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.
Resumo:
Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In-situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping (MLD) has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III-V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III-V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions.
Resumo:
The emergence and dissemination of multi-drug resistant pathogens is a global concern. Moreover, even greater levels of resistance are conferred on bacteria when in the form of biofilms (i.e., complex, sessile communities of bacteria embedded in an organic polymer matrix). For decades, antimicrobial peptides have been hailed as a potential solution to the paucity of novel antibiotics, either as natural inhibitors that can be used alone or in formulations with synergistically acting antibiotics. Here, we evaluate the potential of the antimicrobial peptide nisin to increase the efficacy of the antibiotics polymyxin and colistin, with a particular focus on their application to prevent biofilm formation of Pseudomonas aeruginosa. The results reveal that the concentrations of polymyxins that are required to effectively inhibit biofilm formation can be dramatically reduced when combined with nisin, thereby enhancing efficacy, and ultimately, restoring sensitivity. Such combination therapy may yield added benefits by virtue of reducing polymyxin toxicity through the administration of significantly lower levels of polymyxin antibiotics.
Resumo:
Current practices in agricultural management involve the application of rules and techniques to ensure high quality and environmentally friendly production. Based on their experience, agricultural technicians and farmers make critical decisions affecting crop growth while considering several interwoven agricultural, technological, environmental, legal and economic factors. In this context, decision support systems and the knowledge models that support them, enable the incorporation of valuable experience into software systems providing support to agricultural technicians to make rapid and effective decisions for efficient crop growth. Pest control is an important issue in agricultural management due to crop yield reductions caused by pests and it involves expert knowledge. This paper presents a formalisation of the pest control problem and the workflow followed by agricultural technicians and farmers in integrated pest management, the crop production strategy that combines different practices for growing healthy crops whilst minimising pesticide use. A generic decision schema for estimating infestation risk of a given pest on a given crop is defined and it acts as a metamodel for the maintenance and extension of the knowledge embedded in a pest management decision support system which is also presented. This software tool has been implemented by integrating a rule-based tool into web-based architecture. Evaluation from validity and usability perspectives concluded that both agricultural technicians and farmers considered it a useful tool in pest control, particularly for training new technicians and inexperienced farmers.
Resumo:
Particle filtering has proven to be an effective localization method for wheeled autonomous vehicles. For a given map, a sensor model, and observations, occasions arise where the vehicle could equally likely be in many locations of the map. Because particle filtering algorithms may generate low confidence pose estimates under these conditions, more robust localization strategies are required to produce reliable pose estimates. This becomes more critical if the state estimate is an integral part of system control. We investigate the use of particle filter estimation techniques on a hovercraft vehicle. The marginally stable dynamics of a hovercraft require reliable state estimates for proper stability and control. We use the Monte Carlo localization method, which implements a particle filter in a recursive state estimate algorithm. An H-infinity controller, designed to accommodate the latency inherent in our state estimation, provides stability and controllability to the hovercraft. In order to eliminate the low confidence estimates produced in certain environments, a multirobot system is designed to introduce mobile environment features. By tracking and controlling the secondary robot, we can position the mobile feature throughout the environment to ensure a high confidence estimate, thus maintaining stability in the system. A laser rangefinder is the sensor the hovercraft uses to track the secondary robot, observe the environment, and facilitate successful localization and stability in motion.
Resumo:
The performance of supersonic engine inlets and external aerodynamic surfaces can be critically affected by shock wave / boundary layer interactions (SBLIs), whose severe adverse pressure gradients can cause boundary layer separation. Currently such problems are avoided primarily through the use of boundary layer bleed/suction which can be a source of significant performance degradation. This study investigates a novel type of flow control device called micro-vortex generators (µVGs) which may offer similar control benefits without the bleed penalties. µVGs have the ability to alter the near-wall structure of compressible turbulent boundary layers to provide increased mixing of high speed fluid which improves the boundary layer health when subjected to flow disturbance. Due to their small size,µVGs are embedded in the boundary layer which provide reduced drag compared to the traditional vortex generators while they are cost-effective, physically robust and do not require a power source. To examine the potential of µVGs, a detailed experimental and computational study of micro-ramps in a supersonic boundary layer at Mach 3 subjected to an oblique shock was undertaken. The experiments employed a flat plate boundary layer with an impinging oblique shock with downstream total pressure measurements. The moderate Reynolds number of 3,800 based on displacement thickness allowed the computations to use Large Eddy Simulations without the subgrid stress model (LES-nSGS). The LES predictions indicated that the shock changes the structure of the turbulent eddies and the primary vortices generated from the micro-ramp. Furthermore, they generally reproduced the experimentally obtained mean velocity profiles, unlike similarly-resolved RANS computations. The experiments and the LES results indicate that the micro-ramps, whose height is h≈0.5δ, can significantly reduce boundary layer thickness and improve downstream boundary layer health as measured by the incompressible shape factor, H. Regions directly behind the ramp centerline tended to have increased boundary layer thickness indicating the significant three-dimensionality of the flow field. Compared to baseline sizes, smaller micro-ramps yielded improved total pressure recovery. Moving the smaller ramps closer to the shock interaction also reduced the displacement thickness and the separated area. This effect is attributed to decreased wave drag and the closer proximity of the vortex pairs to the wall. In the second part of the study, various types of µVGs are investigated including micro-ramps and micro-vanes. The results showed that vortices generated from µVGs can partially eliminate shock induced flow separation and can continue to entrain high momentum flux for boundary layer recovery downstream. The micro-ramps resulted in thinner downstream displacement thickness in comparison to the micro-vanes. However, the strength of the streamwise vorticity for the micro-ramps decayed faster due to dissipation especially after the shock interaction. In addition, the close spanwise distance between each vortex for the ramp geometry causes the vortex cores to move upwards from the wall due to induced upwash effects. Micro-vanes, on the other hand, yielded an increased spanwise spacing of the streamwise vortices at the point of formation. This resulted in streamwise vortices staying closer to the wall with less circulation decay, and the reduction in overall flow separation is attributed to these effects. Two hybrid concepts, named “thick-vane” and “split-ramp”, were also studied where the former is a vane with side supports and the latter has a uniform spacing along the centerline of the baseline ramp. These geometries behaved similar to the micro-vanes in terms of the streamwise vorticity and the ability to reduce flow separation, but are more physically robust than the thin vanes. Next, Mach number effect on flow past the micro-ramps (h~0.5δ) are examined in a supersonic boundary layer at M=1.4, 2.2 and 3.0, but with no shock waves present. The LES results indicate that micro-ramps have a greater impact at lower Mach number near the device but its influence decays faster than that for the higher Mach number cases. This may be due to the additional dissipation caused by the primary vortices with smaller effective diameter at the lower Mach number such that their coherency is easily lost causing the streamwise vorticity and the turbulent kinetic energy to decay quickly. The normal distance between the vortex core and the wall had similar growth indicating weak correlation with the Mach number; however, the spanwise distance between the two counter-rotating cores further increases with lower Mach number. Finally, various µVGs which include micro-ramp, split-ramp and a new hybrid concept “ramped-vane” are investigated under normal shock conditions at Mach number of 1.3. In particular, the ramped-vane was studied extensively by varying its size, interior spacing of the device and streamwise position respect to the shock. The ramped-vane provided increased vorticity compared to the micro-ramp and the split-ramp. This significantly reduced the separation length downstream of the device centerline where a larger ramped-vane with increased trailing edge gap yielded a fully attached flow at the centerline of separation region. The results from coarse-resolution LES studies show that the larger ramped-vane provided the most reductions in the turbulent kinetic energy and pressure fluctuation compared to other devices downstream of the shock. Additional benefits include negligible drag while the reductions in displacement thickness and shape factor were seen compared to other devices. Increased wall shear stress and pressure recovery were found with the larger ramped-vane in the baseline resolution LES studies which also gave decreased amplitudes of the pressure fluctuations downstream of the shock.
Resumo:
Water scarcity is a global issue that has already affected every continent. Membrane technology is considered as one of the most promising candidates for resolving this worsening issue. Among all the membrane processes, the emerging forward osmosis (FO) membrane process is osmotically-driven and has unique advantages compared with other traditional pressure-driven membrane processes. One of the major challenges to advancing the FO membrane process is the lack of a suitable membrane. Polyelectrolyte thin film prepared via layer-by-layer (LbL) technique has demonstrated its excellent performance in many applications including electronics, optics, sensors, etc. Recent studies have revealed the potential of polyelectrolyte thin films in acting as the active separation layer of FO membranes, but significant efforts are still needed to improve the membrane performance and understand the transport mechanisms. This dissertation introduces a novel approach to prepare a zeolite-embedded polyelectrolyte composite membrane for enhanced FO performance. This membrane takes advantages of the versatile LbL process to unprecedentedly incorporate high loading of zeolite nanoparticles, which are anticipated to facilitate water transport due to the uniquely interconnected structure of zeolites. Major topics discussed in this dissertation include: (1) the synthesis and evaluation of the polyelectrolyte-zeolite composite FO membrane, (2) the examination of the fouling resistance to identify its technical limitations, (3) the demonstration of the membrane regenerability as an effective strategy for membrane fouling control, and (4) the investigation of crosslinking effects on the membrane performance to elucidate the transport mechanisms involved in the zeolite-embedded polyelectrolyte membranes. Comparative studies have been made between polyelectrolyte membranes with and without zeolite incorporation. The findings suggest that the zeolite-embedded membrane, although slightly more susceptible to silica scaling, has demonstrated enhanced water flux and separation capability, good resistance to organic fouling, and complete regenerability for fouling control. Additionally, the embedded zeolite nanoparticles are proved to be able to create fast pathways for water transport. Overall, this work provides a novel strategy to create zeolite-polymer composite membranes with enhanced separation performance and unique fouling mitigation properties.
Resumo:
Os mecanismos e técnicas do domínio de Tempo-Real são utilizados quando existe a necessidade de um sistema, seja este um sistema embutido ou de grandes dimensões, possuir determinadas características que assegurem a qualidade de serviço do sistema. Os Sistemas de Tempo-Real definem-se assim como sistemas que possuem restrições temporais rigorosas, que necessitam de apresentar altos níveis de fiabilidade de forma a garantir em todas as instâncias o funcionamento atempado do sistema. Devido à crescente complexidade dos sistemas embutidos, empregam-se frequentemente arquiteturas distribuídas, onde cada módulo é normalmente responsável por uma única função. Nestes casos existe a necessidade de haver um meio de comunicação entre estes, de forma a poderem comunicar entre si e cumprir a funcionalidade desejadas. Devido à sua elevada capacidade e baixo custo a tecnologia Ethernet tem vindo a ser alvo de estudo, com o objetivo de a tornar num meio de comunicação com a qualidade de serviço característica dos sistemas de tempo-real. Como resposta a esta necessidade surgiu na Universidade de Aveiro, o Switch HaRTES, o qual possui a capacidade de gerir os seus recursos dinamicamente, de modo a fornecer à rede onde é aplicado garantias de Tempo-Real. No entanto, para uma arquitetura de rede ser capaz de fornecer aos seus nós garantias de qualidade serviço, é necessário que exista uma especificação do fluxo, um correto encaminhamento de tráfego, reserva de recursos, controlo de admissão e um escalonamento de pacotes. Infelizmente, o Switch HaRTES apesar de possuir todas estas características, não suporta protocolos standards. Neste documento é apresentado então o trabalho que foi desenvolvido para a integração do protocolo SRP no Switch HaRTES.
Resumo:
This socio-legal thesis has explored the factors responsible for explaining whether and how redress mechanisms control bureaucratic decision-making. The research considered the three principal institutions of administrative justice: courts, tribunals, and ombudsman schemes. The field setting was the local authority education area and the thesis examined bureaucratic decision-making about admissions to school, home-to-school transport, and Special Educational Needs (SEN). The thesis adopted a qualitative approach, using interviews and documentary research, within a multiple embedded case study design. The intellectual foundations of the research were inter-disciplinary, cutting across law, socio-legal studies, public administration, organization studies, and social policy. The thesis drew on these scholarly fields to explore the nature of bureaucratic decision-making, the extent to which it can be controlled and the way that learning occurs in bureaucracies and, finally, the extent to which redress mechanisms might exercise control. The concept of control was studied across all its dimensions – in relation both to ex post control in specific cases and the more challenging notion of ex ante or structuring control. The aim of the thesis was not to measure the prevalence of bureaucratic control by redress mechanisms, but to understand the factors that might explain its presence or absence in a particular area. The findings of the research have allowed for a number of analytical refinements and extensions to be made to existing theoretical and empirical understandings. 14 factors, along with 87 supporting propositions, have been set out with the aim of making empirically derived suggestions which can be followed up in future research. In terms of the thesis’ contribution to existing knowledge, its comparative focus and its emphasis on the broad notion of control offered the potential for new insights to be developed. Overall, the thesis claims to have made three contributions to the conceptual framework for understanding the exercise of control by redress mechanisms: it emphasizes the importance of ‘feedback’ in relation to the nature of the cases referred to redress mechanisms; it calls attention to the structure of bureaucratic decision-making as well as its normative character; and it discusses how the operational modes of redress mechanisms relate to their control functions.
Resumo:
Recent efforts to develop large-scale neural architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason is that most conventional SOMs use a static encoding representation: Each input is typically represented by the fixed activation of a single node in the map layer. This not only carries information in an inefficient and unreliable way that impedes building robust multi-SOM neural architectures, but it is also inconsistent with rhythmic oscillations in biological neural networks. Here I develop and study an alternative encoding scheme that instead uses limit cycle attractors of multi-focal activity patterns to represent input patterns/sequences. Such a fundamental change in representation raises several questions: Can this be done effectively and reliably? If so, will map formation still occur? What properties would limit cycle SOMs exhibit? Could multiple such SOMs interact effectively? Could robust architectures based on such SOMs be built for practical applications? The principal results of examining these questions are as follows. First, conditions are established for limit cycle attractors to emerge in a SOM through self-organization when encoding both static and temporal sequence inputs. It is found that under appropriate conditions a set of learned limit cycles are stable, unique, and preserve input relationships. In spite of the continually changing activity in a limit cycle SOM, map formation continues to occur reliably. Next, associations between limit cycles in different SOMs are learned. It is shown that limit cycles in one SOM can be successfully retrieved by another SOM’s limit cycle activity. Control timings can be set quite arbitrarily during both training and activation. Importantly, the learned associations generalize to new inputs that have never been seen during training. Finally, a complete neural architecture based on multiple limit cycle SOMs is presented for robotic arm control. This architecture combines open-loop and closed-loop methods to achieve high accuracy and fast movements through smooth trajectories. The architecture is robust in that disrupting or damaging the system in a variety of ways does not completely destroy the system. I conclude that limit cycle SOMs have great potentials for use in constructing robust neural architectures.
Resumo:
El presente trabajo se realizó en una Planta de Hormigón Asfáltico, donde se realizó el estudio del ruido como factor de riesgo bajo las perspectivas de: Salud Ocupacional, Seguridad e Higiene Industrial. Este enfoque holístico, define la influencia que éste riesgo laboral ejerce sobre la pérdida de agudeza auditiva. Se estableció inicialmente el marco teórico y legal vigente sobre el ruido, posteriormente se describió la metodología de estudio, operatividad de variables, y la muestra a estudiar. Luego se procedió a la caracterización de la población y área estudiada, así como las actividades productivas. Dentro de la Higiene Industrial, se monitoreó la exposición del nivel de presión sonora, se realizó el comparativo con el nivel permisible (TWA 8 horas) establecido en el “Reglamento de Seguridad y Salud de los Trabajadores”, D.E. 2393. En términos de Seguridad Industrial, se analizó el equipo de protección personal EPP utilizado, y las variables determinantes. En el ámbito de Salud Ocupacional, se estudió: características personales de trabajadores, patologías relacionadas con sordera, y un cuestionario de exposición al ruido. Finalmente se determinó la existencia de sobreexposición a ruido laboral en la empresa objeto de estudio, mediante el estudio del estado de salud auditiva de los colaboradores se determinó la gran incidencia de personal sano y finalmente se determinó las medidas de control a implementarse enfatizadas a la realidad descubierta en el presente estudio, las que incluyen cambios en equipos y maquinaria, buenas prácticas de trabajo, planes de adiestramiento y capacitación en todo el personal entre otros.
Resumo:
It is remarkable that there are no deployed military hybrid vehicles since battlefield fuel is approximately 100 times the cost of civilian fuel. In the commercial marketplace, where fuel prices are much lower, electric hybrid vehicles have become increasingly common due to their increased fuel efficiency and the associated operating cost benefit. An absence of military hybrid vehicles is not due to a lack of investment in research and development, but rather because applying hybrid vehicle architectures to a military application has unique challenges. These challenges include inconsistent duty cycles for propulsion requirements and the absence of methods to look at vehicle energy in a holistic sense. This dissertation provides a remedy to these challenges by presenting a method to quantify the benefits of a military hybrid vehicle by regarding that vehicle as a microgrid. This innovative concept allowed for the creation of an expandable multiple input numerical optimization method that was implemented for both real-time control and system design optimization. An example of each of these implementations was presented. Optimization in the loop using this new method was compared to a traditional closed loop control system and proved to be more fuel efficient. System design optimization using this method successfully illustrated battery size optimization by iterating through various electric duty cycles. By utilizing this new multiple input numerical optimization method, a holistic view of duty cycle synthesis, vehicle energy use, and vehicle design optimization can be achieved.
Resumo:
In this report, we develop an intelligent adaptive neuro-fuzzy controller by using adaptive neuro fuzzy inference system (ANFIS) techniques. We begin by starting with a standard proportional-derivative (PD) controller and use the PD controller data to train the ANFIS system to develop a fuzzy controller. We then propose and validate a method to implement this control strategy on commercial off-the-shelf (COTS) hardware. An analysis is made into the choice of filters for attitude estimation. These choices are limited by the complexity of the filter and the computing ability and memory constraints of the micro-controller. Simplified Kalman filters are found to be good at estimation of attitude given the above constraints. Using model based design techniques, the models are implemented on an embedded system. This enables the deployment of fuzzy controllers on enthusiast-grade controllers. We evaluate the feasibility of the proposed control strategy in a model-in-the-loop simulation. We then propose a rapid prototyping strategy, allowing us to deploy these control algorithms on a system consisting of a combination of an ARM-based microcontroller and two Arduino-based controllers. We then use a combination of the code generation capabilities within MATLAB/Simulink in combination with multiple open-source projects in order to deploy code to an ARM CortexM4 based controller board. We also evaluate this strategy on an ARM-A8 based board, and a much less powerful Arduino based flight controller. We conclude by proving the feasibility of fuzzy controllers on Commercial-off the shelf (COTS) hardware, we also point out the limitations in the current hardware and make suggestions for hardware that we think would be better suited for memory heavy controllers.
Resumo:
In recent years, security of industrial control systems has been the main research focus due to the potential cyber-attacks that can impact the physical operations. As a result of these risks, there has been an urgent need to establish a stronger security protection against these threats. Conventional firewalls with stateful rules can be implemented in the critical cyberinfrastructure environment which might require constant updates. Despite the ongoing effort to maintain the rules, the protection mechanism does not restrict malicious data flows and it poses the greater risk of potential intrusion occurrence. The contributions of this thesis are motivated by the aforementioned issues which include a systematic investigation of attack-related scenarios within a substation network in a reliable sense. The proposed work is two-fold: (i) system architecture evaluation and (ii) construction of attack tree for a substation network. Cyber-system reliability remains one of the important factors in determining the system bottleneck for investment planning and maintenance. It determines the longevity of the system operational period with or without any disruption. First, a complete enumeration of existing implementation is exhaustively identified with existing communication architectures (bidirectional) and new ones with strictly unidirectional. A detailed modeling of the extended 10 system architectures has been evaluated. Next, attack tree modeling for potential substation threats is formulated. This quantifies the potential risks for possible attack scenarios within a network or from the external networks. The analytical models proposed in this thesis can serve as a fundamental development that can be further researched.
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.