943 resultados para Electrochemical impedance spectroscopy techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O tempo de vida útil de um mineroduto depende de diversos fatores, dentre os quais aqueles relacionados ao processo de corrosão provocado pelo escoamento da polpa de minério. Nesse contexto, a corrosão do aço carbono API 5L-X70 foi investigada em meio de água do processo e polpa de bauxita (5% m/v) utilizando técnicas eletroquímicas. Os resultados do potencial de circuito aberto (EOC), polarização e impedância eletroquímica (EIE) mostraram que a presença do minério de bauxita provocou mudanças no comportamento eletroquímico do meio quando comparados aos obtidos em água do processo na ausência do minério. Um aumento na taxa de corrosão do aço carbono foi observado pela presença da bauxita. A análise de superfície nos corpos de prova utilizando microscopia eletrônica de varredura (MEV) mostrou a formação de rachaduras nos óxidos presentes na superfície do metal, sendo esse fenômeno o responsável pelo aumento da corrosão do aço na presença da bauxita. A metodologia utilizada neste trabalho mostrou-se útil para a investigação de processos corrosivos em minerodutos e aplicável a outras situações onde polpas de minérios são escoadas em tubulações de aço.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work was to evaluate the corrosion of commercially pure (CP) titanium and Ti6Al4V in vitro at different F- concentrations regularly found in the oral cavity by using different electrochemical tests and surface analysis techniques. electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) and potentio-dynamic polarization tests were associated to advanced characterization techniques such as SEM, EDS, AFM, ICP-MS and XPS. OCP tests revealed a higher reactivity of both CP titanium and Ti6Al4V at 12,300 ppm F- concentration than that recorded at 227 ppm F-. Also, a significant decrease of the corrosion resistance of both materials was noticed by EIS in fluoride solutions. Material loss caused by corrosion was noticed on titanium surfaces by SEM and AFM in the presence of high F- concentration. CP titanium degraded by pitting corrosion while Ti6Al4V suffered from general corrosion showing micro-cracks on surface. Furthermore, a high release of metallic ions from the test samples after immersion at high F concentrations was detected by ICP-MS, that can be potentially toxic to oral tissues. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Syntactic Functionally Graded Metal Matrix Composites (SFGMMC) are a type of composites reinforced by microballoons exhibiting a graded reinforcement distribution. These materials constitute a promising new generation of lightweight structural materials for aerospace, marine and shielding/insulation applications. In this work, A356 alloy reinforced with silica-alumina microballoons (SiO2-Al2O3) was processed by casting techniques. The influence of the microballoon distribution gradient on the corrosion behaviour of the composite was investigated by potentiodynamic polarisation and Electrochemical Impedance Spectroscopy (EIS). Composite surfaces were analysed before and after testing by Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) to determine the influence of microstructural changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold plated surfaces are widely applied in several technical and decorative fields. The two main issues regarding the discussion on the field of precious metal coatings concern the increase in the use of thinner gold layers and 'Ni free' substrates. In order to ensure the quality of the final products, the effects of the plated surfaces on their performance require thorough and accurate research. In this paper, the corrosion resistance of gold plated nickel, copper and bronze was investigated by electrochemical methods specifically potentiodynamic polarisation and electrochemical impedance spectroscopy in phosphate buffered saline. The cytotoxicity of the gold plated substrates was also evaluated and compared. The results showed that the substrate related to the best corrosion resistance and cytotoxicity among the tested ones was bronze, and the one with the lowest performance was nickel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an efficient alternative to obtain recessed microelectrodes device on gold electrode surface, in which mixed self-assembled monolayer of long and short carbon alkanethiol chains was used for this purpose. Development of the modified electrodes included the chemical adsorption of 11-mercaptoundecanoic acid and 2-mercaptoethanol solution, as well as their mixtures, on gold surface, resulting in the final mixed self-assembled monolayer configuration. For comparison, the electrochemical performance of self-assembled monolayer of 11-mercaptoundecanoic acid. 3-mercaptopropionic acid, 4-mercapto-1-butanol and 6-mercapto-1-hexanol modified electrodes was also investigated. It was verified that, in the mixed self-assembled monolayer, the 11-mercaptoundecanoic acid acts as a barrier for electron transfer while the short alkanethiol chair is deposited in an island-like shape through which electrons can be freely transferred to ions in solution, allowing electrochemical reactions to occur. The performance of the modified electrodes toward microelectrode behavior was investigated via cyclic voltammetry and electrochemical impedance spectroscopy measurements using [Fe(CN)(6)](3-/4-) redox couple as a probe. In this case, sigmoidal voltammetric responses were obtained, very similar to those observed for microelectrodes. Such behavior reinforces the proposition of electron transfer through the short alkanethiol chain layer and surface blockage by the long chain one. Electrochemical impedance results allowed calculated the mean radius value of each microelectrode disks of 3.8 mu m with about 22 mu m interval between them. The microelectrode environment provided by the mixed self-assembled monolayer can be conveniently used to provide an efficient catalytic conversion in biosensing applications. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a novel material for the electrochemical determination of bisphenol A using a nanocomposite based on multi-walled carbon nanotubes modified with antimony nanoparticles has been investigated. The morphology, structure, and electrochemical performance of the nanocomposite electrodes were characterised by field emission gun scanning electron microscopy, energy-dispersive X-ray spectroscopy, and cyclic voltammetry. A scan rate study and electrochemical impedance spectroscopy showed that the bisphenol A oxidation product is adsorbed on nanocomposite electrode surface. Differential pulse voltammetry in phosphate buffer solution at pH 6, allowed the development of a method to determine bisphenol A levels in the range of 0.5-5.0 mu mol L-1, with a detection limit of 5.24 nmol L-1 (1.19 mu g L-1). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the detection of glucose and triglycerides using information visualization methods to process impedance spectroscopy data. The sensing units contained either lipase or glucose oxidase immobilized in layer-by-layer (LbL) films deposited onto interdigitated electrodes. The optimization consisted in identifying which part of the electrical response and combination of sensing units yielded the best distinguishing ability. It is shown that complete separation can be obtained for a range of concentrations of glucose and triglyceride when the interactive document map (IDMAP) technique is used to project the data into a two-dimensional plot. Most importantly, the optimization procedure can be extended to other types of biosensors, thus increasing the versatility of analysis provided by tailored molecular architectures exploited with various detection principles. (C) 2012 Elsevier B.V. All rights reserved.