864 resultados para Electricity Demand
Resumo:
This study contrasts the actual conservation spending and the Australian public’s demand for conservation funding for two Australian mammal species, the koala and the northern hairy-nosed wombat. It involves a survey of 204 members of the Australian public. Willingness to fund conservation action to protect the northern hairy-nosed wombat was found to be higher than that for the koala despite the koala’s immense popularity. The critically endangered status of the northern-hairy nosed wombat and the more secure conservation status of the koala is a factor likely to have influenced the comparative willingness-to-pay decisions. Actual annual conservation expenditure for both species is lower than the estimated aggregate willingness-to-pay for their conservation. Furthermore, conservation funding for the koala is much more than that for the northern hairy-nosed wombat even though the estimated public willingness-to-pay (demand) for funding koala conservation was less than for this wombat species. Reasons for this are suggested. They may also help to explain misalignment between demand for conservation funding of other species involving differences in charisma and endangerment.
Resumo:
Least-Cost Planning played a key role in the development of the energy efficiency and renewable energy industries in the USA, It has not been widely used elsewhere, largely due to differences in other nations' regulatory environments and the emergence of competitive markets as the dominant paradigm for electricity planning, Least-Cost Planning, however may over valuable insights for creating regulatory framework for competitive electricity markers. This paper examines some lessons which may be extracted from an analysis of the Least-Cost Planning experience in the USA and suggests how these lessons might prove beneficial in guiding Australia's electricity industry reform, This analysis demonstrates how market-based reforms may be flawed if they ignore the history of previous reform processes.
Resumo:
Retention of green leaf area in grain sorghum under post-anthesis drought, known as stay-green, is associated with greater biomass production, lodging resistance and yield. The stay-green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay-green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay-green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a postanthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age-related senescence and N uptake during grain tilling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay-green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay-green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow snore carbon and nitrogen to be allocated to the roots of stay-green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.
Resumo:
This paper describes a multi-agent based simulation (MABS) framework to construct an artificial electric power market populated with learning agents. The artificial market, named TEMMAS (The Electricity Market Multi-Agent Simulator), explores the integration of two design constructs: (i) the specification of the environmental physical market properties and (ii) the specification of the decision-making (deliberative) and reactive agents. TEMMAS is materialized in an experimental setup involving distinct power generator companies that operate in the market and search for the trading strategies that best exploit their generating units' resources. The experimental results show a coherent market behavior that emerges from the overall simulated environment.
Resumo:
Para a diminuição da dependência energética de Portugal face às importações de energia, a Estratégia Nacional para a Energia 2020 (ENE 2020) define uma aposta na produção de energia a partir de fontes renováveis, na promoção da eficiência energética tanto nos edifícios como nos transportes com vista a reduzir as emissões de gases com efeito de estufa. No campo da eficiência energética, o ENE 2020 pretende obter uma poupança energética de 9,8% face a valores de 2008, traduzindo-se em perto de 1800 milhões de tep já em 2015. Uma das medidas passa pela aposta na mobilidade eléctrica, onde se prevê que os veículos eléctricos possam contribuir significativamente para a redução do consumo de combustível e por conseguinte, para a redução das emissões de CO2 para a atmosfera. No entanto, esta redução está condicionada pelas fontes de energia utilizadas para o abastecimento das baterias. Neste estudo foram determinados os consumos de combustível e as emissões de CO2 de um veículo de combustão interna adimensional representativo do parque automóvel. É também estimada a previsão de crescimento do parque automóvel num cenário "Business-as-Usual", através dos métodos de previsão tecnológica para o horizonte 2010-2030, bem como cenários de penetração de veículos eléctricos para o mesmo período com base no método de Fisher- Pry. É ainda analisado o impacto que a introdução dos veículos eléctricos tem ao nível dos consumos de combustível, das emissões de dióxido de carbono e qual o impacto que tal medida terá na rede eléctrica, nomeadamente no diagrama de carga e no nível de emissões de CO2 do Sistema Electroprodutor Nacional. Por fim, é avaliado o impacto dos veículos eléctricos no diagrama de carga diário português, com base em vários perfis de carga das baterias. A introdução de veículos eléctricos em Portugal terá pouca expressão dado que, no melhor dos cenários haverão somente cerca de 85 mil unidades em circulação, no ano de 2030. Ao nível do consumo de combustíveis rodoviários, os veículos eléctricos poderão vir a reduzir o consumo de gasolina até 0,52% e até 0,27% no consumo de diesel, entre 2010 e 2030, contribuindo ligeiramente uma menor dependência energética externa. Ao nível do consumo eléctrico, o abastecimento das baterias dos veículos eléctricos representará até 0,5% do consumo eléctrico total, sendo que parte desse abastecimento será garantido através de centrais de ciclo combinado a gás natural. Apesar da maior utilização deste tipo de centrais térmicas para produção de energia, tanto para abastecimento das viaturas eléctricas, como para o consumo em geral, verifica-se que em 2030, o nível de emissões do sistema electroprodutor será cerca de 46% inferior aos níveis registados em 2010, prevendo-se que atinja as 0,163gCO2/kWh produzido pelo Sistema Electroprodutor Nacional devido à maior quota de produção das fontes de energia renovável, como o vento, a hídrica ou a solar.
Resumo:
In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.
Resumo:
In a liberalized electricity market, the Transmission System Operator (TSO) plays a crucial role in power system operation. Among many other tasks, TSO detects congestion situations and allocates the payments of electricity transmission. This paper presents a software tool for congestion management and transmission price determination in electricity markets. The congestion management is based on a reformulated Optimal Power Flow (OPF), whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the dispatch proposed by the market operator. The transmission price computation considers the physical impact caused by the market agents in the transmission network. The final tariff includes existing system costs and also costs due to the initial congestion situation and losses costs. The paper includes a case study for the IEEE 30 bus power system.
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs may turn electricity generation by renewable sources valuable in electricity markets. Information availability and adequate decision-support tools are crucial for achieving VPPs’ goals. This involves information concerning associated producers and market operation. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, focusing mainly in the information requirements for adequate decision making.
Resumo:
The introduction of wind power generation in several countries around the world, including in European countries, where energy policy directives have encouraged the use of renewables, led to several changes in market and power systems operation. The intensive integration of these sources has led to situations in which the demand is lower than the available renewable resources. In these situations a part of the available generation is wasted if not used for storage or to supply additional demand. This paper proposes a real time demand response methodology based on changing the electricity price for the consumers expecting an increase in the demand in the periods in which that demand is lower than the available renewable generation. The consumers response to the changes in electricity price is characterized by their price elasticity of demand considered distinct for each consumer type. The proposed methodology is applied to the Portuguese power system, in the context of the Iberian electricity market (MIBEL). The renewable-based producers are considered as special producers, with special tariffs, and so it is important to use the energy available as it will be paid anyway. In this context, consumers are entities actively participating in the operation of the market.