807 resultados para Electric Vehicles, Transport system, Power system, Modelling, Energy, Greenhouse gas emissions
Resumo:
The design of a sustainable electricity generation and transmission system is based on the established science of anthropogenic climate change and the realization that depending on imported fossil-fuels is becoming a measure of energy insecurity of supply. A model is proposed which integrates generation fuel mix composition, assignment of plants and optimized power flow, using Portugal as a case study. The result of this co-optimized approach is an overall set of generator types/fuels which increases the diversity of Portuguese electricity supply, lowers its dependency on imported fuels by 14.62% and moves the country towards meeting its regional and international obligations of 31% energy from renewables by 2020 and a 27% reduction in greenhouse gas emissions by 2012, respectively. The quantity and composition of power generation at each bus is specified, with particular focus on quantifying the amount of distributed generation. Based on other works, the resultant, overall distributed capacity penetration of 19.02% of total installed generation is expected to yield positive network benefits. Thus, the model demonstrates that national energy policy and technical deployment can be linked through sustainability and, moreover, that the respective goals may be mutually achieved via holistic, integrated design. ©2009 IEEE.
Resumo:
In recent years, Silicon Carbide (SiC) semiconductor devices have shown promise for high density power electronic applications, due to their electrical and thermal properties. In this paper, the performance of SiC JFETs for hybrid electric vehicle (HEV) applications is investigated at heatsink temperatures of 100 °C. The thermal runaway characteristics, maximum current density and packaging temperature limitations of the devices are considered and the efficiency implications discussed. To quantify the power density capabilities of power transistors, a novel 'expression of rating' (EoR) is proposed. A prototype single phase, half-bridge voltage source inverter using SiC JFETs is also tested and its performance at 25 °C and 100 °C investigated.
Resumo:
O carvão e outros combustíveis fósseis, continuarão a ser, por décadas, a principal matéria-prima energética para as Centrais Térmicas, não obstante os esforços para, dentro do possível, substituir os combustíveis fósseis por fontes de energia renovável.Tal como está, hoje, bem documentado, a produção de gases com efeito estufa (GEE), designadamente CO2, resulta da combustão dos ditos combustíveis fósseis, sendo que se espera ser possível mitigar substancialmente a emissão de tais gases com a aplicação das chamadas Tecnologias Limpas do Carvão.Há, pois, necessidade de promover o abatimento do CO2 através de Tecnologias de Emissão Zero ou Tecnologias Livres de Carbono, incluindo designadamente a Captura, o Transporte e a Sequestração geológica de CO2 correspondentes ao que é costume designar por Tecnologias CAC (Captação e Armazenamento de Carbono). De facto, tais tecnologias e, designadamente, o armazenamento geológico de CO2 são as únicas que, no estado actual do conhecimento, são capazes de permitir que se cumpram as metas do ambicioso programa da EU para a energia e o ambiente conhecido por “20 20 para 2020” em conjugação com os aspectos económicos das directivas relativas ao Comércio Europeu de Licenças de Emissão – CELE (Directivas 2003/87/EC, 2004/101/EC e 2009/29/EC).A importância do tema está, aliás, bem demonstrada com o facto da Comissão Europeia ter formalmente admitido que as metas supracitadas serão impossíveis de atingir sem Sequestração Geológica de CO2. Esta é, pois, uma das razões de ter sido recentemente publicada a Directiva Europeia 2009/31/EC de 23 de Abril de 2009 expressamente dedicada ao tema do Armazenamento Geológico de CO2.Ora, a questão do armazenamento geológico de CO2 implica, para além das Tecnologias CAC acima mencionadas e da sua viabilização em termos tanto técnicos como económicos, ou seja, neste último aspecto, competitiva com o sistema CELE, também o conhecimento, da percepção pública sobre o assunto. Isto é, a praticabilidade das Tecnologias CAC implica que se conheça a opinião pública sobre o tema e, naturalmente, que face a esta realidade se prestem os esclarecimentos necessários como, aliás, é reconhecido na própria Directiva Europeia 2009/31/EC.Dado que a Fundação Fernando Pessoa / Universidade Fernando Pessoa através do seu Centro de Investigação em Alterações Globais, Energia, Ambiente e Bioengenharia – CIAGEB tem ultimado um Projecto de Engenharia relativo à Sequestração Geológica de CO2 nos Carvões (Metantracites) da Bacia Carbonífera do Douro – o Projecto COSEQ, preocupou-se naturalmente, desde o início, com o lançamento de inquéritos de percepção da opinião pública sobre o assunto.Tal implicou, nesta fase, a tradução para português e o lançamento do inquérito europeu ACCSEPT que não tinha sido ainda formalmente lançado de forma generalizada entre nós. Antes, porém, de lançar publicamente tal inquérito – o que está actualmente já em curso – resolveu-se testar o método de lançamento, a recolha de dados e o seu tratamento com uma amostra correspondente ao que se designou por Comunidade Fernando Pessoa, i.e. o conjunto de docentes, discentes, funcionários e outras pessoas relacionadas com a Universidade Fernando Pessoa (cerca de 5000 individualidades).Este trabalho diz, precisamente, respeito à preparação, lançamento e análise dos resultados do dito inquérito Europeu ACCSEPT a nível da Comunidade Fernando Pessoa. Foram recebidas 525 respostas representando 10,5% da amostra. A análise de resultados foi sistematicamente comparada com os obtidos nos outros países europeus, através do projecto ACCSEPT e, bem assim, com os resultados obtidos num inquérito homólogo lançado no Brasil. The use of coal, and other fossil fuels, will remain for decades as the main source of energy for power generation, despite the important efforts made to replace, as far as possible, fossil fuels with renewable power sources.As is well documented, the production of Greenhouse Gases (GHG), mainly CO2, arises primarily from the combustion of fossil fuels. The increasing application of Clean Coal Technologies-CCTs, is expected to mitigate substantially against the emission of such gases.There is consequently a need to promote the CO2 abatement through Zero Emission (Carbon Free) Technologies - ZETs, which includes CO2 capture, transport and geological storage, i.e. the so-called CCS (Carbon, Capture and Storage) technologies. In fact, these technologies are the only ones that are presently able to conform to the ambitious EU targets set out under the “20 20 by 2020” EU energy and environment programme, jointly with the economic aspects of the EU Directives 2003/87/EC, 2004/101/EC and 2009/29/EC concerned with the Greenhouse Gas Emissions Allowance Trading Scheme – ETS scheme. The European Commission formal admission that the referred targets will be impossible to reach without the implementation and contribution of geological storage clearly demonstrate the importance of this particular issue, and for this reason the EC Directive 2009/31/EC of April 23, 2009 on Geological Storage of CO2 was recently published.In considering the technical and economical viabilities of CCS technologies, the latter in competition with the ETS scheme, it is believed that public perception will dictate the success of the development and implementation of CO2 geological storage at a large industrial level. This means that, in order to successfully implement CCS technologies, not only must public opinion be taken into consideration but objective information must also be provided to the public in order to raise subject awareness, as recognized in the referred Directive 2009/31/EC.In this context, the Fernando Pessoa Foundation / University Fernando Pessoa, through its CIAGEB (Global Change, Energy, Environment and Bioengineering) RDID&D Unit, is the sponsor of an Engineering Project for the Geological Sequestration of CO2 in Douro Coalfield Meta-anthracites - the COSEQ Project, and is therefore also engaged in public perception surveys with regards to CCS technologies.At this stage, the original European ACCSEPT inquiry was translated to Portuguese and submitted only to the “Fernando Pessoa Community” - comprising university lecturers, students, other employees, as well as, former students and persons that have a professional or academic relationship with the university (c. 5000 individuals). The results obtained from this first inquiry will be used to improve the survey informatics system in terms of communication, database, and data treatment prior to resubmission of the inquiry to the Portuguese public at large.The present publication summarizes the process and the results obtained from the ACCSEPT survey distributed to the “Fernando Pessoa Community”. 525 replies, representing 10.5% of the sample, have been received and analysed. The assessment of the results was systematically compared with those obtained from other European Countries, as reported by the ACCSEPT inquiry, as well as with those from an identical inquiry launched in Brazil.
Resumo:
Countries across the world are being challenged to decarbonise their energy systems in response to diminishing fossil fuel reserves, rising GHG emissions and the dangerous threat of climate change. There has been a renewed interest in energy efficiency, renewable energy and low carbon energy as policy‐makers seek to identify and put in place the most robust sustainable energy system that can address this challenge. This thesis seeks to improve the evidence base underpinning energy policy decisions in Ireland with a particular focus on natural gas, which in 2011 grew to have a 30% share of Ireland’s TPER. Natural gas is used in all sectors of the Irish economy and is seen by many as a transition fuel to a low-carbon energy system; it is also a uniquely excellent source of data for many aspects of energy consumption. A detailed decomposition analysis of natural gas consumption in the residential sector quantifies many of the structural drives of change, with activity (R2 = 0.97) and intensity (R2 = 0.69) being the best explainers of changing gas demand. The 2002 residential building regulations are subject to an ex-post evaluation, which using empirical data finds a 44 ±9.5% shortfall in expected energy savings as well as a 13±1.6% level of non-compliance. A detailed energy demand model of the entire Irish energy system is presented together with scenario analysis of a large number of energy efficiency policies, which show an aggregate reduction in TFC of 8.9% compared to a reference scenario. The role for natural gas as a transition fuel over a long time horizon (2005-2050) is analysed using an energy systems model and a decomposition analysis, which shows the contribution of fuel switching to natural gas to be worth 12 percentage points of an overall 80% reduction in CO2 emissions. Finally, an analysis of the potential for CCS in Ireland finds gas CCS to be more robust than coal CCS for changes in fuel prices, capital costs and emissions reduction and the cost optimal location for a gas CCS plant in Ireland is found to be in Cork with sequestration in the depleted gas field of Kinsale.
Resumo:
Gemstone Team Renewables
Resumo:
Seasonal and day-to-day variations in travel behaviour and performance of private passenger vehicles can be partially explained by changes in weather conditions. Likewise, in the electricity sector, weather affects energy demand. The impact of weather conditions on private passenger vehicle performance, usership statistics and travel behaviour has been studied for conventional, internal combustion engine, vehicles. Similarly, weather-driven variability in electricity demand and generation has been investigated widely. The aim of these analyses in both sectors is to improve energy efficiency, reduce consumption in peak hours and reduce greenhouse gas emissions. However, the potential effects of seasonal weather variations on electric vehicle usage have not yet been investigated. In Ireland the government has set a target requiring 10% of all vehicles in the transport fleet to be powered by electricity by 2020 to meet part of its European Union obligations to reduce greenhouse gas emissions and increase energy efficiency. This paper fills this knowledge gap by compiling some of the published information available for internal combustion engine vehicles and applying the lessons learned and results to electric vehicles with an analysis of historical weather data in Ireland and electricity market data in a number of what-if scenarios. Areas particularly impacted by weather conditions are battery performance, energy consumption and choice of transportation mode by private individuals.
Resumo:
To meet European Union renewable energy and greenhouse gas emissions reduction targets the Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. However, reducing energy consumption and decreasing greenhouse gas emissions in transport is a considerable challenge due to heavy reliance on fossil fuels. In fact, transport in the Republic of Ireland in 2009 accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the effect of electric vehicle charging on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is analysed. The energy consumed, greenhouse gas emissions generated and changes to the wholesale price of electricity under peak and off-peak charging scenarios are quantified and discussed. Results from the study show that off-peak charging is more beneficial than peak charging.
Resumo:
Farm incomes in Ireland are in decline and many farmers would operate at a loss in the absence of subsidies. Agriculture is responsible for 27% of Ireland's greenhouse gas emissions and is the largest contributing sector. Penetration of renewable energy in the heat and transport sectors is falling short of targets, and there is no clear plan for achieving them. The anaerobic digestion of grass to produce biogas or biomethane is put forward as a multifaceted solution, which could help meet energy and emissions targets, reduce dependence on imported energy, and provide additional farm income. This paper addresses the economic viability of such a system. Grass biogas/biomethane fares poorly under the current combined heat and power tariff structure, which is geared toward feedstock that attracts a gate fee. Tariff structures similar to those used in other countries are necessary for the industry to develop. Equally, regulation should be implemented to allow injection of biomethane into the gas grid in Ireland. Blends of natural gas and biomethane can be sold, offering a cost-competitive green fuel. Sale as a renewable transport fuel could allow profitability for the farmer and savings for the consumer, but suffers due to the lack of a market. Under current conditions, the most economically viable outlet for grass biomethane is sale as a renewable heating fuel. The key to competitiveness is the existing natural gas infrastructure that enables distribution of grass biomethane, and the renewable energy targets that allow renewable fuels to compete against each other. © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd.
Resumo:
Heat pumps can provide domestic heating at a cost that is competitive with oil heating in particular. If the electricity supply contains a significant amount of renewable generation, a move from fossil fuel heating to heat pumps can reduce greenhouse gas emissions. The inherent thermal storage of heat pump installations can also provide the electricity supplier with valuable flexibility. The increase in heat pump installations in the UK and Europe in the last few years poses a challenge for low-voltage networks, due to the use of induction motors to drive the pump compressors. The induction motor load tends to depress voltage, especially on starting. The paper includes experimental results, dynamic load modelling, comparison of experimental results and simulation results for various levels of heat pump deployment. The simulations are based on a generic test network designed to capture the main characteristics of UK distribution system practice. The simulations employ DIgSlILENT to facilitate dynamic simulations that focus on starting current, voltage variations, active power, reactive power and switching transients.
Resumo:
The water and wastewater industry in the UK accounts for around 3% of total energy use and just over 1% of total UK greenhouse gas emissions. Targets for greenhouse gas emissions reduction and higher renewable energy penetration, coupled with rising energy costs, growing demand for wastewater services and tightening EU water quality requirements, have led to an increased interest in alternative wastewater treatment methods. The use of short rotation coppice (SRC) willow for the treatment of wastewater effluent is one such alternative, which brings with it the dual benefits of wastewater treatment and production of biomass for energy. In order to assess the effectiveness of SRC willow, it is important to analyse the overall energy balance in terms of energy input versus energy output. This paper carries out an energy life cycle analysis of a specific SRC willow plantation in Northern Ireland to which farmyard washings (dirty water) are applied. The system boundaries include the establishment, maintenance, and harvesting of the plantation, along with the transport and drying of the wood for biomass combustion. The analysis shows that the overall energy balance is positive, and that the direct and indirect energy demands are 12% and 8% of gross energy production respectively. The energy demands of the plantation are compared with the energy required to treat an equivalent nutrient load in a conventional wastewater treatment plant. While a conventional plant consumes 2.6 MJ/m3 , the irrigation system consumes 1.6 MJ/m3 and the net energy production of the scenario is 48 MJ/m3 .
Resumo:
Electric vehicles are a key prospect for future transportation. A large penetration of electric vehicles has the potential to reduce the global fossil fuel consumption and hence the greenhouse gas emissions and air pollution. However, the additional stochastic loads imposed by plug-in electric vehicles will possibly introduce significant changes to existing load profiles. In his paper, electric vehicles loads are integrated into an 5-unit system using a non-convex dynamic dispatch model. The actual infrastructure characteristics including valve-point effects, load balance constrains and transmission loss have been included in the model. Multiple load profiles are comparatively studied and compared in terms of economic and environmental impacts in order o identify patterns to charge properly. The study as expected shows ha off-peak charging is the best scenario with respect to using less fuels and producing less emissions.
Resumo:
Dependency on thermal generation and continued wind power growth in Europe due to renewable energy and greenhouse gas emissions targets has resulted in an interesting set of challenges for power systems. The variability of wind power impacts dispatch and balancing by grid operators, power plant operations by generating companies and market wholesale costs. This paper quantifies the effects of high wind power penetration on power systems with a dependency on gas generation using a realistic unit commitment and economic dispatch model. The test system is analyzed under two scenarios, with and without wind, over one year. The key finding of this preliminary study is that despite increased ramping requirements in the wind scenario, the unit cost of electricity due to sub-optimal operation of gas generators does not show substantial deviation from the no wind scenario.
Resumo:
Com o aumento da população mundial registado nos últimos anos surgiu também uma maior procura energética. Esse aumento foi inicialmente colmatado recorrendo essencialmente a fontes de origem fóssil, pelo facto destas serem mais baratas. No entanto, essa tendência de preços baixos sofreu o primeiro abalo nos anos 70 do século passado, altura em que o preço do petróleo disparou, devido a questões políticas. Nessa altura ficou visível para os países ocidentais o quanto estes eram dependentes dos países produtores de petróleo que, em geral, são instáveis politicamente. Começou então a procura de fontes energéticas alternativas. Além da questão económica do aumento do preço dos combustíveis, existe também o problema ambiental. Os maiores responsáveis pela emissão de gases efeito estufa (GEE) são os combustíveis fósseis. Os GEE contribuem para o aquecimento global, o que origina fenómenos ambientais severos que poderão levar a mudanças climáticas significativas. As energias renováveis apresentam-se como a solução mais viável ao problema energético e ambiental que se verifica actualmente, porque permitem colmatar o aumento da procura energética de uma forma limpa e sustentável. Na sequência destes problemas surgiram nos últimos anos veículos que permitem reduzir ou mesmo eliminar o consumo de combustíveis fósseis, como os veículos híbridos eléctricos, eléctricos e a hidrogénio. Nesta dissertação analisa-se um sistema que foi pensado para ser implementado em áreas de serviço, que permite efectuar o carregamento de electric vehicles (EV) utilizando energia eléctrica de origem fotovoltaica e a produção de hidrogénio para os fuels cell electric vehicles (FCEV). É efectuada uma análise económica do sistema, uma análise ambiental e analisou-se também o impacto na redução da dependência do país em relação ao exterior, sendo ainda efectuada uma pequena análise ao sistema MOBIE. No caso dos veículos a hidrogénio, foi determinada qual seria a melhor opção em termos económicos, para a produção de hidrogénio considerando três regimes de produção: recorrendo apenas à energia eléctrica proveniente do sistema fotovoltaico, apenas à energia eléctrica da rede, ou uma combinação dos dois regimes. O sistema estudado nesta dissertação apresenta um enorme potencial a nível energético e ambiental, surgindo como alternativa para abastecer os veículos que irão permitir, no futuro, eliminar a dependência energética em relação às fontes fósseis e ao mesmo tempo diminuir a quantidade de gases efeito estufa emitidos para a atmosfera.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia