928 resultados para Elastic Modulus
Resumo:
The aim of the work is to conduct a finite element model analysis on a small – size concrete beam and on a full size concrete beam internally reinforced with BFRP exposed at elevated temperatures. Experimental tests performed at Kingston University have been used to compare the results from the numerical analysis for the small – size concrete beam. Once the behavior of the small – size beam at room temperature is investigated and switching to the heating phase reinforced beams are tested at 100°C, 200°C and 300°C in loaded condition. The aim of the finite element analysis is to reflect the three – point bending test adopted into the oven during the exposure of the beam at room temperature and at elevated temperatures. Performance and deformability of reinforced beams are straightly correlated to the material properties and a wide analysis on elastic modulus and coefficient of thermal expansion is given in this work. Develop a good correlation between the numerical model and the experimental test is the main objective of the analysis on the small – size concrete beam, for both modelling the aim is also to estimate which is the deterioration of the material properties due to the heating process and the influence of different parameters on the final result. The focus of the full – size modelling which involved the last part of this work is to evaluate the effect of elevated temperatures, the material deterioration and the deflection trend on a reinforced beam characterized by a different size. A comparison between the results from different modelling has been developed.
Resumo:
The research work was aimed at studying, with a deterministic approach, the relationships between the rock’s texture and its mechanical properties determined at the laboratory scale. The experimentation was performed on a monomineralic crystalline rock, varying in texture, i.e. grains shape. Multi-scale analysis has been adopted to determine the elasto-mechanical properties of the crystals composing the rock and its strength and deformability at the macro-scale. This let us to understand how the structural variability of the investigated rock affects its macromechanical behaviour. Investigations have been performed on three different scales: nano-scale (order of nm), micro-scale (tens of m) and macro-scale (cm). Innovative techniques for rock mechanics, i.e. Depth Sensing Indentation (DSI), have been applied, in order to determine the elasto-mechanical properties of the calcite grains. These techniques have also allowed to study the influence of grain boundaries on the mechanical response of calcite grains by varying the indents’ sizes and to quantify the effect of the applied load on the hardness and elastic modulus of the grain (indentation size effect, ISE). The secondary effects of static indentation Berkovich, Vickers and Knoop were analyzed by SEM, and some considerations on the rock’s brittle behaviour and the effect of microcracks can be made.
Resumo:
Phononische Kristalle sind strukturierte Materialien mit sich periodisch ändernden elastischen Moduln auf der Wellenlängenskala. Die Interaktion zwischen Schallwellen und periodischer Struktur erzeugt interessante Interferenzphänomene, und phononische Kristalle erschließen neue Funktionalitäten, die in unstrukturierter Materie unzugänglich sind. Hypersonische phononische Kristalle im Speziellen, die bei GHz Frequenzen arbeiten, haben Periodizitäten in der Größenordnung der Wellenlänge sichtbaren Lichts und zeigen daher die Wege auf, gleichzeitig Licht- und Schallausbreitung und -lokalisation zu kontrollieren, und dadurch die Realisierung neuartiger akusto-optischer Anordnungen. Bisher bekannte hypersonische phononische Kristalle basieren auf thermoplastischen Polymeren oder Epoxiden und haben nur eingeschränkte thermische und mechanische Stabilität und mechanischen Kontrast. Phononische Kristalle, die aus mit Flüssigkeit gefüllten zylindrischen Kanälen in harter Matrix bestehen, zeigen einen sehr hohen elastischen Kontrast und sind bislang noch unerforscht. In dieser Dissertation wird die experimentelle Untersuchung zweidimensionaler hypersonischer phononischer Kristalle mit hexagonaler Anordnung zylindrischer Nanoporen basierend auf der Selbstorganisation anodischen Aluminiumoxids (AAO) beschrieben. Dazu wird die Technik der hochauflösenden inelastischen Brillouin Lichtstreuung (BLS) verwendet. AAO ist ein vielsetiges Modellsystem für die Untersuchung reicher phononischer Phänomene im GHz-Bereich, die eng mit den sich in den Nanoporen befindlichen Flüssigkeiten und deren Interaktion mit der Porenwand verknüpft sind. Gerichteter Fluss elastischer Energie parallel und orthogonal zu der Kanalachse, Lokalisierung von Phononen und Beeinflussung der phononischen Bandstruktur bei gleichzeitig präziser Kontrolle des Volumenbruchs der Kanäle (Porosität) werden erörtert. Außerdem ermöglicht die thermische Stabilität von AAO ein temperaturabhängiges Schalten phononischer Eigenschaften infolge temperaturinduzierter Phasenübergänge in den Nanoporen. In monokristallinen zweidimensionalen phononischen AAO Kristallen unterscheiden sich die Dispersionsrelationen empfindlich entlang zweier hoch symmetrischer Richtungen in der Brillouinzone, abhängig davon, ob die Poren leer oder gefüllt sind. Alle experimentellen Dispersionsrelationen werden unter Zuhilfenahme theoretische Ergebnisse durch finite Elemente Analyse (FDTD) gedeutet. Die Zuordnung der Verschiebungsfelder der elastischen Wellen erklärt die Natur aller phononischen Moden.
Resumo:
A thorough investigation was made of the structure-property relation of well-defined statistical, gradient and block copolymers of various compositions. Among the copolymers studied were those which were synthesized using isobornyl acrylate (IBA) and n-butyl acrylate (nBA) monomer units. The copolymers exhibited several unique properties that make them suitable materials for a range of applications. The thermomechanical properties of these new materials were compared to acrylate homopolymers. By the proper choice of the IBA/nBA monomer ratio, it was possible to tune the glass transition temperature of the statistical P(IBA-co-nBA) copolymers. The measured Tg’s of the copolymers with different IBA/nBA monomer ratios followed a trend that fitted well with the Fox equation prediction. While statistical copolymers showed a single glass transition (Tg between -50 and 90 ºC depending on composition), DSC block copolymers showed two Tg’s and the gradient copolymer showed a single, but very broad, glass transition. PMBL-PBA-PMBL triblock copolymers of different composition ratios were also studied and revealed a microphase separated morphology of mostly cylindrical PMBL domains hexagonally arranged in the PBA matrix. DMA studies confirmed the phase separated morphology of the copolymers. Tensile studies showed the linear PMBL-PBA-PMBL triblock copolymers having a relatively low elongation at break that was increased by replacing the PMBL hard blocks with the less brittle random PMBL-r-PMMA blocks. The 10- and 20-arm PBA-PMBL copolymers which were studied revealed even more unique properties. SAXS results showed a mixture of cylindrical PMBL domains hexagonally arranged in the PBA matrix, as well as lamellar. Despite PMBL’s brittleness, the triblock and multi-arm PBA-PMBL copolymers could become suitable materials for high temperature applications due to PMBL’s high glass transition temperature and high thermal stability. The structure-property relation of multi-arm star PBA-PMMA block copolymers was also investigated. Small-angle X-ray scattering revealed a phase separated morphology of cylindrical PMMA domains hexagonally arranged in the PBA matrix. DMA studies found that these materials possess typical elastomeric behavior in a broad range of service temperatures up to at least 250°C. The ultimate tensile strength and the elastic modulus of the 10- and 20-arm star PBA-PMMA block copolymers are significantly higher than those of their 3-arm or linear ABA type counterparts with similar composition, indicating a strong effect of the number of arms on the tensile properties. Siloxane-based copolymers were also studied and one of the main objectives here was to examine the possibility to synthesize trifluoropropyl-containing siloxane copolymers of gradient distribution of trifluoropropyl groups along the chain. DMA results of the PDMS-PMTFPS siloxane copolymers synthesized via simultaneous copolymerization showed that due to the large difference in reactivity rates of 2,4,6-tris(3,3,3-trifluoropropyl)-2,4,6-trimethylcyclotrisiloxane (F) and hexamethylcyclotrisiloxane (D), a copolymer of almost block structure containing only a narrow intermediate fragment with gradient distribution of the component units was obtained. A more dispersed distribution of the trifluoropropyl groups was obtained by the semi-batch copolymerization process, as the DMA results revealed more ‘‘pure gradient type’’ features for the siloxane copolymers which were synthesized by adding F at a controlled rate to the polymerization of the less reactive D. As with trifluoropropyl-containing siloxane copolymers, vinyl-containing polysiloxanes may be converted to a variety of useful polysiloxane materials by chemical modification. But much like the trifluoropropyl-containing siloxane copolymers, as a result of so much difference in the reactivities between the component units 2,4,6-trivinyl-2,4,6-trimethylcyclotrisiloxane (V) and hexamethylcyclotrisiloxane (D), thermal and mechanical properties of the PDMS-PMVS copolymers obtained by simultaneous copolymerization was similar to those of block copolymers. Only the copolymers obtained by semi-batch method showed properties typical for gradient copolymers.
Resumo:
In the last decade the near-surface mounted (NSM) strengthening technique using carbon fibre reinforced polymers (CFRP) has been increasingly used to improve the load carrying capacity of concrete members. Compared to externally bonded reinforcement (EBR), the NSM system presents considerable advantages. This technique consists in the insertion of carbon fibre reinforced polymer laminate strips into pre-cut slits opened in the concrete cover of the elements to be strengthened. CFRP reinforcement is bonded to concrete with an appropriate groove filler, typically epoxy adhesive or cement grout. Up to now, research efforts have been mainly focused on several structural aspects, such as: bond behaviour, flexural and/or shear strengthening effectiveness, and energy dissipation capacity of beam-column joints. In such research works, as well as in field applications, the most widespread adhesives that are used to bond reinforcements to concrete are epoxy resins. It is largely accepted that the performance of the whole application of NSM systems strongly depends on the mechanical properties of the epoxy resins, for which proper curing conditions must be assured. Therefore, the existence of non-destructive methods that allow monitoring the curing process of epoxy resins in the NSM CFRP system is desirable, in view of obtaining continuous information that can provide indication in regard to the effectiveness of curing and the expectable bond behaviour of CFRP/adhesive/concrete systems. The experimental research was developed at the Laboratory of the Structural Division of the Civil Engineering Department of the University of Minho in Guimar\~aes, Portugal (LEST). The main objective was to develop and propose a new method for continuous quality control of the curing of epoxy resins applied in NSM CFRP strengthening systems. This objective is pursued through the adaptation of an existing technique, termed EMM-ARM (Elasticity Modulus Monitoring through Ambient Response Method) that has been developed for monitoring the early stiffness evolution of cement-based materials. The experimental program was composed of two parts: (i) direct pull-out tests on concrete specimens strengthened with NSM CFRP laminate strips were conducted to assess the evolution of bond behaviour between CFRP and concrete since early ages; and, (ii) EMM-ARM tests were carried out for monitoring the progressive stiffness development of the structural adhesive used in CFRP applications. In order to verify the capability of the proposed method for evaluating the elastic modulus of the epoxy, static E-Modulus was determined through tension tests. The results of the two series of tests were then combined and compared to evaluate the possibility of implementation of a new method for the continuous monitoring and quality control of NSM CFRP applications.
Resumo:
La determinazione del modulo di Young è fondamentale nello studio della propagazione di fratture prima del rilascio di una valanga e per lo sviluppo di affidabili modelli di stabilità della neve. Il confronto tra simulazioni numeriche del modulo di Young e i valori sperimentali mostra che questi ultimi sono tre ordini di grandezza inferiori a quelli simulati (Reuter et al. 2013). Lo scopo di questo lavoro è stimare il modulo di elasticità studiando la dipendenza dalla frequenza della risposta di diversi tipi di neve a bassa densità, 140-280 kg m-3. Ciò è stato fatto applicando una compressione dinamica uniassiale a -15°C nel range 1-250 Hz utilizzando il Young's modulus device (YMD), prototipo di cycling loading device progettato all'Istituto per lo studio della neve e delle valanghe (SLF). Una risposta viscoelastica della neve è stata identificata a tutte le frequenze considerate, la teoria della viscoelasticità è stata applicata assumendo valida l'ipotesi di risposta lineare della neve. Il valore dello storage modulus, E', a 100 Hz è stato identificato come ragionevolmente rappresentativo del modulo di Young di ciascun campione neve. Il comportamento viscoso è stato valutato considerando la loss tangent e la viscosità ricavata dai modelli di Voigt e Maxwell. Il passaggio da un comportamento più viscoso ad uno più elastico è stato trovato a 40 Hz (~1.1•10-2 s-1). Il maggior contributo alla dissipazione è nel range 1-10 Hz. Infine, le simulazioni numeriche del modulo di Young sono state ottenute nello stesso modo di Reuter et al.. La differenza tra le simulazioni ed i valori sperimentali di E' sono, al massimo, di un fattore 5; invece, in Reuter et al., era di 3 ordini di grandezza. Pertanto, i nostri valori sperimentali e numerici corrispondono meglio, indicando che il metodo qui utilizzato ha portato ad un miglioramento significativo.
Resumo:
SUMMARY The aim of this study was to evaluate the influence of surface roughness on surface hardness (Vickers; VHN), elastic modulus (EM), and flexural strength (FLS) of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. One hundred sixty-two samples of VITABLOCS Mark II (VMII) and 162 samples of IPS Empress CAD (IPS) were ground according to six standardized protocols producing decreasing surface roughnesses (n=27/group): grinding with 1) silicon carbide (SiC) paper #80, 2) SiC paper #120, 3) SiC paper #220, 4) SiC paper #320, 5) SiC paper #500, and 6) SiC paper #1000. Surface roughness (Ra/Rz) was measured with a surface roughness meter, VHN and EM with a hardness indentation device, and FLS with a three-point bending test. To test for a correlation between surface roughness (Ra/Rz) and VHN, EM, or FLS, Spearman rank correlation coefficients were calculated. The decrease in surface roughness led to an increase in VHN from (VMII/IPS; medians) 263.7/256.5 VHN to 646.8/601.5 VHN, an increase in EM from 45.4/41.0 GPa to 66.8/58.4 GPa, and an increase in FLS from 49.5/44.3 MPa to 73.0/97.2 MPa. For both ceramic materials, Spearman rank correlation coefficients showed a strong negative correlation between surface roughness (Ra/Rz) and VHN or EM and a moderate negative correlation between Ra/Rz and FLS. In conclusion, a decrease in surface roughness generally improved the mechanical properties of the CAD/CAM ceramic materials tested. However, FLS was less influenced by surface roughness than expected.
Resumo:
Currently, the Specification for Aluminum Structures (Aluminum Association, 2010) shows thin-walled aluminum plate sections with radii greater than eight inches have a lower compressive strength capacity than a flat plate with the same width and thickness. This inconsistency with intuition, which suggests any degree of folding a plate should increase its elastic buckling strength, inspired this study. A wide range of curvatures are studied—from a nearly flat plate to semi-circular. To quantify the curvature, a single non-dimensional parameter is used to represent all combinations of width, thickness and radius. Using the finite strip method (CU-FSM), elastic local buckling stresses are investigated. Using the ratio of stress values of curved plates compared to flat plates of the same size, equivalent plate-buckling coefficients are calculated. Using this data, nonlinear regression analyses are performed to develop closed form equations for five different edge support conditions. These equations can be used to calculate the elastic critical buckling stress for any curved aluminum section when the geometric properties (width, thickness, and radius) and the material properties (elastic modulus and Poisson’s ratio) are known. This procedure is illustrated in examples, each showing the applicability of the derived equations to geometries other than those investigated in this study and also providing comparisons with theoretically exact numerical analysis results.
Resumo:
A comparative study has been made of human and great ape molar tooth enamel. Nanoindentation techniques are used to map profiles of elastic modulus and hardness across sections from the enamel–dentin junction to the outer tooth surface. The measured data profiles overlap between species, suggesting a degree of commonality in material properties. Using established deformation and fracture relations, critical loads to produce function-threatening damage in the enamel of each species are calculated for characteristic tooth sizes and enamel thicknesses. The results suggest that differences in load-bearing capacity of molar teeth in primates are less a function of underlying material properties than of morphology.
Resumo:
The large, bunodont postcanine teeth in living sea otters (Enhydra lutris) have been likened to those of certain fossil hominins, particularly the ’robust’ australopiths (genus Paranthropus). We examine this evolutionary convergence by conducting fracture experiments on extracted molar teeth of sea otters and modern humans (Homo sapiens) to determine how load-bearing capacity relates to tooth morphology and enamel material properties. In situ optical microscopy and x-ray imaging during simulated occlusal loading reveal the nature of the fracture patterns. Explicit fracture relations are used to analyze the data and to extrapolate the results from humans to earlier hominins. It is shown that the molar teeth of sea otters have considerably thinner enamel than those of humans, making sea otter molars more susceptible to certain kinds of fractures. At the same time, the base diameter of sea otter first molars is larger, diminishing the fracture susceptibility in a compensatory manner. We also conduct nanoindentation tests to map out elastic modulus and hardness of sea otter and human molars through a section thickness, and microindentation tests to measure toughness. We find that while sea otter enamel is just as stiff elastically as human enamel, it is a little softer and tougher. The role of these material factors in the capacity of dentition to resist fracture and deformation is considered. From such comparisons, we argue that early hominin species like Paranthropus most likely consumed hard food objects with substantially higher biting forces than those exerted by modern humans.
Resumo:
Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.
Resumo:
Polymer electrolyte fuel cell (PEMFC) is promising source of clean power in many applications ranging from portable electronics to automotive and land-based power generation. However, widespread commercialization of PEMFC is primarily challenged by degradation. The mechanisms of fuel cell degradation are not well understood. Even though the numbers of installed units around the world continue to increase and dominate the pre-markets, the present lifetime requirements for fuel cells cannot be guarantee, creating the need for a more comprehensive knowledge of material’s ageing mechanism. The objective of this project is to conduct experiments on membrane electrode assembly (MEA) components of PEMFC to study structural, mechanical, electrical and chemical changes during ageing and understanding failure/degradation mechanism. The first part of this project was devoted to surface roughness analysis on catalyst layer (CL) and gas diffusion layer (GDL) using surface mapping microscopy. This study was motivated by the need to have a quantitative understanding of the GDL and CL surface morphology at the submicron level to predict interfacial contact resistance. Nanoindentation studies using atomic force microscope (AFM) were introduced to investigate the effect of degradation on mechanical properties of CL. The elastic modulus was decreased by 45 % in end of life (EOL) CL as compare to beginning of life (BOL) CL. In another set of experiment, conductive AFM (cAFM) was used to probe the local electric current in CL. The conductivity drops by 62 % in EOL CL. The future task will include characterization of MEA degradation using Raman and Fourier transform infrared (FTIR) spectroscopy. Raman spectroscopy will help to detect degree of structural disorder in CL during degradation. FTIR will help to study the effect of CO in CL. XRD will be used to determine Pt particle size and its crystallinity. In-situ conductive AFM studies using electrochemical cell on CL to correlate its structure with oxygen reduction reaction (ORR) reactivity
Resumo:
A poly(ethylene glycol) (PEG)-based hydrogel was used as a scaffold for chondrocyte culture. Branched PEG-vinylsulfone macromers were end-linked with thiol-bearing matrix metalloproteinase (MMP)-sensitive peptides (GCRDGPQGIWGQDRCG) to form a three-dimensional network in situ under physiologic conditions. Both four- and eight-armed PEG macromer building blocks were examined. Increasing the number of PEG arms increased the elastic modulus of the hydrogels from 4.5 to 13.5 kPa. PEG-dithiol was used to prepare hydrogels that were not sensitive to degradation by cell-derived MMPs. Primary bovine calf chondrocytes were cultured in both MMP-sensitive and MMP-insensitive hydrogels, formed from either four- or eight-armed PEG. Most (>90%) of the cells inside the gels were viable after 1 month of culture and formed cell clusters. Gel matrices with lower elastic modulus and sensitivity to MMP-based matrix remodeling demonstrated larger clusters and more diffuse, less cell surface-constrained cell-derived matrix in the chondron, as determined by light and electron microscopy. Gene expression experiments by real-time RT-PCR showed that the expression of type II collagen and aggrecan was increased in the MMP-sensitive hydrogels, whereas the expression level of MMP-13 was increased in the MMP-insensitive hydrogels. These results indicate that cellular activity can be modulated by the composition of the hydrogel. This study represents one of the first examples of chondrocyte culture in a bioactive synthetic material that can be remodeled by cellular protease activity.
Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy.
Resumo:
TNF-α (tumor necrosis factor-α) is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL) in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1) mechanical properties, employing atomic force microscopy; 2) cytoskeletal organization, through fluorescence microscopy; and 3) membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h), for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells); the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with controls. Collectively, these results demonstrate that sufficiently high levels of circulating TNF-α have similar effects on different endothelial districts, and provide additional information for unraveling the possible correlations between circulating pro-inflammatory cytokines and systemic vascular dysfunction.
Resumo:
Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.