907 resultados para Egypt -- Description and travel
Resumo:
Saucer-shaped iron-manganese crusts occur adjacent to gravel shoal areas in Oneida lake in central New York. The crusts usually have a crude concentric banding owing to an alternation of orange, iron-rich layers and black, iron-poor layers. Materials from both types of layers are x-ray amorphous. The Oneida lake crusts, like most other freshwater manganese nodules, contain about the same Mn concentration as marine manganese nodules, but are usually higher in Fe and lower in trace metals than their marine equivalents. Although Fe and Mn may be precipitating directly from the lake water, it is more likely that the oxidate crusts are the result of precipitation of Fe and Mn when reduced sediment pore water comes in contact with well oxygenated bottom waters. Organisms, particularly bacteria, may play a role in the formation of the crusts, but to date no evidence of this has been found.
Resumo:
Vertical permeability testing was conducted on four samples collected from Site 1109, a borehole advanced during Ocean Drilling Program Leg 180. Closed conditions were applied during each test, and the samples were measured using a constant flow approach and permeant solutions that matched the geochemistry of nearby interstitial waters. Vertical permeabilities measured at 34.5 kPa effective stress generally decreased with depth and ranged from 10**-14 m**2 at 212.53 meters below seafloor (mbsf) to 10**-18 m**2 at 698.10 mbsf. The three deepest samples differed in permeability by less than one order of magnitude. Reconsolidation testing on the shallowest sample yielded a minimum permeability of 1.56 x 10**-16 m**2 at 276 kPa effective stress. Subsequent rebound testing yielded a hysteresis-type curve, with the final permeability measuring lower than the initial permeability by nearly 1.5 orders of magnitude. Dilution experiments indicated that use of a permeant solution matching the geochemistry of the interstitial waters may be necessary for accuracy in measurements and mitigation of clay swellage and collapse during testing, but further research is mandated.
Resumo:
A detailed analysis of the texture, matrix, and elements of the microfacies from the carbonate sequence recovered in ODP Hole 639D resulted in a typological classification of 10 major microfacies types and their variants. The variations in distribution and succession of type microfacies allowed us to divide the carbonate sequence into 12 facies-defined subunits. Based on the analyzed characteristics and their relations, we also propose a paleoenvironmental interpretation involving a mixed carbonate/terrigenous ramp model instead of the previous, classical zoned carbonate platform.
Resumo:
Ferromanganese nodules in the deep-sea and in freshwater lakes usually accrete layers rich in manganese oxides alternating with layers rich in iron oxides. The mechanism producing these alternating layers is unknown; indeed, the mechanism producing the nodules themselves is unknown. In Oneida Lake, New York, precipitants from the lake water and the surfaces of nodules at the sediment-water interface are enriched in Mn, whereas nodules buried in lake sediments have surface layers enriched in Fe. It is hypothesized here, using field and laboratory evidence, that reduction and mobilization of Mn from the nodule surface during periods of anoxic sediment cover produce the high Fe layers observed in the nodules.
Resumo:
The sediments collected at Sites 1150 and 1151 during Leg 186 included many tephra layers and volcaniclastic detritus. In order to identify these tephras, the major oxide compositions of individual glass shards were determined by electron probe microanalyzer. The uppermost four tephras in sediments from Hole 1150A are correlated with the Towada-Hachinohe tephra (To-H; Tohoku district), Shikotsu Daiichi (1st) tephra (Spfa-1; Hokkaido district), Narugo-Yanagisawa tephra (Nr-Y; Tohoku district), and Aso-4 tephra (Kyushu district), respectively. The uppermost tephra in Hole 1151C is correlated with To-H tephra. To-H, Spfa-1, and Aso-4 tephras are also present in piston core KH94-3, LM-8, collected between Sites 1150 and 1151. Eruptive ages of To-H and Spfa-1 estimated from the oxygen isotopic Stages of core KH94-3, LM-8 are between 14.9-15.3 and 39.5-40.1 ka.