986 resultados para East Church (Salem, Mass.)
Resumo:
The Great Sandy Region (incorporating Fraser Island and the Cooloola sand-mass), south-east Queensland, contains a significant area of Ramsar-listed coastal wetlands, including the globally important patterned fen complexes. These mires form an elaborate network of pools surrounded by vegetated peat ridges and are the only known subtropical, Southern Hemisphere examples, with wetlands of this type typically located in high northern latitudes. Sedimentological, palynological and charcoal analysis from the Wathumba and Moon Point complexes on Fraser Island indicate two periods of swamp formation (that may contain patterned fens), one commencing at 12 000 years ago (Moon Point) and the other ~4300 years ago (Wathumba). Wetland formation and development is thought to be related to a combination of biological and hydrological processes with the dominant peat-forming rush, Empodisma minus, being an important component of both patterned and non-patterned mires within the region. In contrast to Northern Hemisphere paludifying systems, the patterning appears to initiate at the start of wetland development or as part of an infilling process. The wetlands dominated by E. minus are highly resilient to disturbance, particularly burning and sea level alterations, and appear to form important refuge areas for amphibians, fish and birds (both non-migratory and migratory) over thousands of years.
Resumo:
Objectives: To examine the association of maternal pregravid body mass index (BMI) and child offspring, all-cause hospitalisations in the first 5 years of life. Methods: Prospective birth cohort study. From 2006 to 2011, 2779 pregnant women (2807 children) were enrolled in the Environments for Healthy Living: Griffith birth cohort study in South-East Queensland, Australia. Hospital delivery record and self-report baseline survey of maternal, household and demographic factors during pregnancy were linked to the Queensland Hospital Admitted Patients Data Collection from 1 November 2006 to 30 June 2012, for child admissions. Maternal pregravid BMI was classified as underweight (<18.5 kg m−2), normal weight (18.5–24.9 kg m−2), overweight (25.0–29.9 kg m−2) or obese (30 kg m−2). Main outcomes were the total number of child hospital admissions and ICD-10-AM diagnostic groupings in the first 5 years of life. Negative binomial regression models were calculated, adjusting for follow-up duration, demographic and health factors. The cohort comprised 8397.9 person years (PYs) follow-up. Results: Children of mothers who were classified as obese had an increased risk of all-cause hospital admissions in the first 5 years of life than the children of mothers with a normal BMI (adjusted rate ratio (RR) =1.48, 95% confidence interval 1.10–1.98). Conditions of the nervous system, infections, metabolic conditions, perinatal conditions, injuries and respiratory conditions were excessive, in both absolute and relative terms, for children of obese mothers, with RRs ranging from 1.3–4.0 (PYs adjusted). Children of mothers who were underweight were 1.8 times more likely to sustain an injury or poisoning than children of normal-weight mothers (PYs adjusted). Conclusion: Results suggest that if the intergenerational impact of maternal obesity (and similarly issues related to underweight) could be addressed, a significant reduction in child health care use, costs and public health burden would be likely.
Resumo:
Introduction and Aims: Wastewater analysis has become a useful technique for monitoring illicit drug use in communities. Findings have been reported from different countries in Europe and North America. We applied this technique to gauge the illicit drug consumption in an urban catchment from South East Queensland, Australia. Design and Methods: The sampling campaigns were conducted in 2009 (21st November – 2nd December) and 2010 (19th – 25th November). We collected daily composite wastewater samples from the inlet of the sewage treatment plant using continuous flow-proportional sampling. Ten illicit drug residues (parent compounds and key metabolites) in the samples were measured using liquid chromatography coupled to tandem mass spectrometer. Results: Seven compounds were quantified in all the samples. Our data indicated higher drug consumption on weekends. Cannabis was the highest used drug in both sampling periods. Compared to the first sampling campaign which indicated that cocaine and methamphetamine use exceeded ecstasy usage, the second sampling campaign suggested the use of methamphetamine exceeded that of ecstasy which in turn exceeded cocaine use. Discussion and Conclusions: The observed weekly trend of drug use in our study is in agreement with findings in other studies. The variation between two sampling periods in the prevalence of drug use may relate to the availability and prices of the drugs on markets. The cocaine use we estimated in 2009 was much greater than estimations obtained through the national household survey [1], implying under- reporting of cocaine use in surveys. Future work is underway to tackle methodological challenges for more accurate estimation.
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Resumo:
To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDP102, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modern Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modern warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BP, and synchronously the modern TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7-6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BP. Thus, the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC, indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BP, caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BP. The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr BP.
Resumo:
We here reconstruct the past change of the East Asian monsoon since 20 Ma using samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea based On a multi-proxy approach including a monomineralic quartz isolation procedure, identification of clay minerals by X-ray Diffraction (XRD) and grain-size analysis of isolated terrigenous materials. Terrigenous supply to ODP Site 1146 was dominated by changes in the strength of multiple sources and transport processes. Grain-size data modeled by an end-member modeling algorithm indicate that eolian dust from the and Asian inland and fluvial input have contributed on average 20% and 80% of total terrigenous material to ODP Site 1146, respectively. Specifically, about 40-53% of the total (quartz+feldspar) and only 6-11% of the total clay is related to eolian supply at the study site. Detailed analysis of the sedimentary environment, and clay minerals combined with previous studies shows that smectite originates mainly from Luzon, kaolinite from the Pearl River and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The proportion and mass accumulation rate (MAR) of the coarsest end-member EM1 (interpreted as eolian dust), ratios of (illite+chlorite)/smectite, (quartz+feldspar)% and mean grain-size of terrigenous materials at ODP Site 1146 were adopted as proxies for East Asian monsoon evolution. The consistent variation of these independent proxies since 20 Ma shows three profound shifts in the intensity of East Asian winter monsoon relative to summer monsoon, as well as aridity of the Asian continent, occurred at similar to 15 Ma, similar to 8 Ma and the youngest at about 3 Ma. In comparison, the summer monsoon intensified contemporaneously with the winter monsoon at 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at similar to 15 Ma, 8 Ma and 3 Ma. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Concentrations and carbon isotopic (C-14, C-13) compositions of black carbon (BC) were measured for three sediment cores collected from the Changjiang River estuary and the shelf of the East China Sea. BC concentrations ranged from 0.02 to 0.14 mg/g (dry weight), and accounted for 5% to 26% of the sedimentary total organic carbon (TOC) pool. Among the three sediment cores collected at each site, sediment from the Changjiang River estuary had relatively high BC contents compared with the sediments from the East China Sea shelf, suggesting that the Changjiang River discharge played an important role in the delivery of BC to the coastal region. Radiocarbon measurements indicate that the ages of BC are in the range of 6910 to 12250 years old B. P. (before present), that is in general, 3700 to 9000 years older than the C-14 ages of TOC in the sediments. These variable radiocarbon ages suggest that the BC preserved in the sediments was derived from the products of both biomass fire and fossil fuel combustion, as well as from ancient rock weathering. Based on an isotopic mass balance model, we calculated that fossil fuel combustion contributed most (60%. 80%) of the BC preserved in these sediments and varied with depth and locations. The deposition and burial of this "slow-cycling" BC in the sediments of the East China Sea shelf represent a significant pool of carbon sink and could greatly influence carbon cycling in the region.
Resumo:
273 samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea (SCS) were analyzed for grain-size distributions using grain-size class vs. standard deviation method and end-member modeling algorithm (EMMA) in order to investigate the evolution of the East Asian mon-soon since about 20 Ma. 10-19 mu m/1.3-2.4 mu m, the ratio of two grain-size populations with the highest variability through time was used to indicate East Asian winter monsoon intensity relative to summer monsoon. The mass accumulation rate of the coarsest end member EM1 (eolian), resulting from EMMA, can be used as a proxy of winter monsoon strength and Asian inland aridity, and the ratio of EM1/(EM2+EM3) as a proxy of winter monsoon intensity relative to summer monsoon. The combined proxies show that a profound enhancement of East Asian winter monsoon strength and winter monsoon intensity relative to summer monsoon occurred at about 8 Ma, and it is possible that the summer monsoon simultaneously intensified with winter monsoon at 3 Ma. Our results are well consistent with the previous studies in loess, eolian deposion in the Pacifc, radiolarians and planktonic foraminifera in the SCS. The phased uplift of the Himalaya-Tibetan Plateau may have played a significant role in strengthening the Asian monsoon at 8 Ma and 3 Ma.
Resumo:
The typology and flux of settling particulate matter (SPM) were investigated based on sediment trap sampling at six typical stations in the Yellow Sea and the East China Sea. The settling particulate matter in the neritic seas was sorted into three categories, lithogenic particles, living organisms, and particle aggregates. The mass of individual organisms is an important portion of particulate matter in the neritic waters. The aggregates contain six types, mucus aggregates, fecal pellets, diatom aggregates, silicoflagellate aggregates, tintinnids, and miscellaneous aggregates, of which the silicoflagellate aggregates and tintinnids are the most abundant in the Yellow Sea and the East China Sea. High particle fluxes, such as 215 to 874 g m(-2). day(-1) SPM in the bottom layer, were found at three stations where the water was well mixed, and the maximum flux was detected in the boundary area between the Yellow Sea and the East China Sea, where a wide nepheloid layer was present. Hence, particle flux in neritic waters can be easily shifted by water turbulence. The net vertical flux (123 to 961 mg C day(-1)), the contribution of lateral advection to resuspension flux (5 to 76%), and the particulate organic carbon export ratio (18 to 60%) were estimated for the other three stations where the water was stratified. The highest values were all found in the upwelling area off the Zhejiang coast, suggesting that the area of high productivity provides a high net vertical flux of SPM. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
128 samples from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea were analyzed for grain size, clay minerals, biogenic opal content and quartz in order to reconstruct changes in East Asian monsoon climate since 8.5 Ma. An abrupt change of terrigenous mass accumulation rate (MAR), clay mineral assemblage, median grain size and biogenic opal MAR about 5.2 Ma suggests that between 8.5-5.2 Ma the source of terrigenous sediment was mainly in the region of surface uplift and basaltic volcanism in southern Vietnam. A simple model of East Asian summer monsoon evolution was based on the clay/feldspar ratio, kaolinite/chlorite ratio and biogenic opal MAR. The summer monsoon has two periods of maximum strength at 8.5-7.6 Ma and 7.1-6.2 Ma. Subsequently, there was a relatively stable period at 6.2-3.5 Ma, continued intensification about 3.5-2.5 Ma, and gradually weakening after 2.5 Ma. Since I Ma the monsoon has intensified, with remarkable high-frequency and amplitude variability. Simultaneous increase in sedimentation rates at ODP Sites 1143, 1146 and 1148, as well as in MAR of terrigenous materials, quartz, feldspar and clay minerals at ODP Site 1143 at 3.5-2.5 Ma, may be the erosional response to both global climatic deterioration and the strengthening of the East Asian summer monsoon after about 3-4 Ma. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Two field studies were conducted to measure pigments in the Southern Yellow Sea (SYS) and the northern East China Sea (NECS) in April (spring) and September (autumn) to evaluate the distribution pattern of phytoplankton stock (Chl a concentration) and the impact of hydrological features such as water mass, mixing and tidal front on these patterns. The results indicated that the Chl a concentration was 2.43 +/- 2.64 (Mean +/- SD) mg m(-3) in April (range, 0.35 to 17.02 mg m(-3)) and 1.75 +/- 3.10 mg m(-3) in September (from 0.07 to 36.54 mg m(-3)) in 2003. Additionally, four areas with higher Chl a concentrations were observed in the surface water in April, while two were observed in September, and these areas were located within or near the point at which different water masses converged (temperature front area). The distribution pattern of Chl a was generally consistent between onshore and offshore stations at different depths in April and September. Specifically, higher Chl a concentrations were observed along the coastal line in September, which consisted of a mixing area and a tidal front area, although the distributional pattern of Chl a concentrations varied along transects in April. The maximum Chl a concentration at each station was observed in the surface and subsurface layer (0-10 m) for onshore stations and the thermocline layer (10-30 m) for offshore stations in September, while the greatest concentrations were generally observed in surface and subsurface water (0-10 m) in April. The formation of the Chl a distributional pattern in the SYS and NECS and its relationship with possible influencing factors is also discussed. Although physical forces had a close relationship with Chl a distribution, more data are required to clearly and comprehensively elucidate the spatial pattern dynamics of Chl a in the SYS and NECS.
Resumo:
Copepod species diversity, abundance and assemblages in relation to water masses over the continental shelf of the Yellow Sea (YS) and East China Sea (ECS) were studied extensively based on the net plankton samples in autumn 2000. Multivariate analysis based on copepod assemblage resulted in recognition of five groups (Groups 1-5) corresponding to the water masses. Groups 1 and 2 delineated from inshore stations with low salinity YS Surface Water, and offshore stations with YS Cold Water in the YS. Group 3 located in the joint area of YS and ECS mainly with Mixed Water. Groups 4 and 5 in the ECS delineated two assemblages mainly from inshore and shallow stations with ECS Mixed Water in the southeastern ECS, and offshore stations along the ECS shelf edge controlled by saline Kuroshio Water. Salinity and temperature were more important in characterizing copepod assemblage of the continental shelf than chlorophyll a. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
http://www.archive.org/details/martyrsofgolbant00brewiala
Resumo:
http://www.archive.org/details/equatorssnowype00crawuoft
Resumo:
http://www.archive.org/details/theislandempire00robiuoft