552 resultados para EUSOCIAL WASP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microsatellite primers developed for a given species are sometimes useful for another in the same genus and in other genera within the same family, making possible to search for pre-existing suitable primers in the databanks such as GenBank. We examined whether existing primers developed for Polistes could be used for Polistes satan Bequaert. We tested 50 microsatellite primers from three Polistes species and found that six microsatellite loci show polymorphism in size in P. satan. These six loci were highly polymorphic, having four to 15 alleles in P. satan with an expected heterozygosity of 0.525-0.832. These loci can be used to study parameters concerning genetic relatedness such as social interactions in colonies and genetic conflicts of interest among nestmate individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evania appendigaster is a cosmopolitan wasp that deposits eggs in the oothecae of some species of cockroaches; its larvae then consume the cockroach eggs and embryos. It is a candidate for the biological control of cockroaches, but little is known about its basic biology. Here we describe the external morphology of all immature stages of E. appendigaster and compare them with the larvae of related species. The life cycle of E. appendigaster includes three larval instars, each with 13 body segments. Their mouthparts were generally reduced, except for the mandibles, which were always sclerotized and toothed, and were especially robust in second-instar larvae. Antennal and mouthpart sensilla were basiconic and difficult to observe. Larvae of E. appendigaster are similar in form to other described evaniid larvae, but quite different from the two available descriptions of larvae of gasteruptiid and aulacid wasps. Further descriptions of evaniid larvae will be useful in determining how widespread this morphology is within the family, and in understanding phylogenetic relationships within Hymenoptera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutualisms such as the figfig wasp mutualism are generally exploited by parasites. We demonstrate that amongst nonpollinating fig wasps (NPFWs) parasitic on Ficus citrifolia, a species of Idarnes galls flowers and another species feeds on galls induced by other wasps killing their larvae. The galling wasp inserts its ovipositor through the fig wall into the fig cavity. The ovipositor then follows a sinuous path and is introduced through the stigma and style of the flower. The egg is deposited between the integument and nucellus, in the exact location where the pollinating mutualistic wasp would have laid its egg. Gall induction is a complex process. In contrast, the path followed by the ovipositor of the other species is straightforward: attacking a larva within a developed gall poses different constraints. Shifts in feeding regime have occurred repeatedly in NPFWs. Monitoring traits associated with such repeated evolutionary shifts may help understand underlying functional constraints. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106, 114122.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies on the obligate interaction between fig trees and their pollinating agaonid wasps have focused on population aspects and wasp-seed exploitation at the level of the inflorescence. Detailed studies on larval and gall development are required to more fully understand how resources are exploited and adaptations fine-tuned by each partner in nursery pollination mutualisms. We studied the larval development of the active pollinating fig wasp, Pegoscapus sp., and the galling process of individual flowers within the figs of its monoecious host, Ficus citrifolia, in Brazil. The pollinator development is strongly dependent on flower pollination. Figs entered by pollen-free wasps were in general more likely to abort. Retained, unpollinated figs had both higher larval mortality and a lower number of wasps. Pegoscapus sp. larvae are adapted to plant development, with two contrasting larval feeding strategies proceeding alongside gall development. The first two larval stages behave as ovary parasites. Later larval stages feed on hypertrophied endosperm. This indicates that a successful galling process relies on endosperm, and also reveals why pollination would be a prerequisite for the production of high-quality galls for this Pegoscapus species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Division of labor among workers is common in insect societies and is thought to be important in their ecological success. In most species, division of labor is based on age (temporal castes), but workers in some ants and termites show morphological specialization for particular tasks (physical castes). Large-headed soldier ants and termites are well-known examples of this specialization. However, until now there has been no equivalent example of physical worker subcastes in social bees or wasps. Here we provide evidence for a physical soldier subcaste in a bee. In the neotropical stingless bee Tetragonisca angustula, nest defense is performed by two groups of guards, one hovering near the nest entrance and the other standing on the wax entrance tube. We show that both types of guards are 30% heavier than foragers and of different shape; foragers have relatively larger heads, whereas guards have larger legs. Low variation within each subcaste results in negligible size overlap between guards and foragers, further indicating that they are distinct physical castes. In addition, workers that remove garbage from the nest are of intermediate size, suggesting that they might represent another unrecognized caste. Guards or soldiers are reared in low but sufficient numbers (1-2% of emerging workers), considering that <1% usually perform this task. When challenged by the obligate robber bee Lestrimelitta limao, an important natural enemy, larger workers were able to fight for longer before being defeated by the much larger robber. This discovery opens up opportunities for the comparative study of physical castes in social insects, including the question of why soldiers appear to be so much rarer in bees than in ants or termites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. Results By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. Conclusion We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Swarm-founding epiponine wasps are an intriguing group of social insects in which colonies are polygynic (several queens share reproduction) and differentiation between castes is often not obvious. However, caste differences in some may be more pronounced in later phases of the colony cycle. Results Using morphometric analyses and multivariate statistics, it was found that caste differences in Metapolybia docilis are slight but more distinct in latter stages of the colony cycle. Conclusions Because differences in body parts are so slight, it is proposed that such variation may be due to differential growth rates of body parts rather than to queens being larger in size, similar to other previously observed epiponines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In my doctoral thesis I investigated the evolution of demographic traits within eusocial Hymenoptera. In the social bees, wasps and ants, eusociality has a unique effect on life span evolution as female larvae with the same genetic background can develop through phenotypic plasticity to a queen or a worker with vastly diverging life-history traits. Ant queens belong to the longest-lived insect species, while workers in most species live only a fraction of the queen’s life span. The average colony size of a species is positively correlated with social complexity, division of labor and diverging morphological female phenotypes all of which also affect life span. Therefore the demographic traits of interest in this thesis were life span and colony size. To understand the evolution of worker life span I applied a trade-off model that includes both hierarchical levels important in eusocial systems, namely the colony- and the individual-level. I showed that the evolution of worker life span may be an adaptive trait on the colony level to optimize resource allocation and therefore fitness in response to different levels of extrinsic mortality. A shorter worker life span as a result of reduced resource investments under high levels of extrinsic mortality increases colony fitness. In a further study I showed that Lasius niger colonies produce different aging phenotypes throughout colony development. Smaller colonies which apply a different foraging strategy than larger colonies produced smaller workers, which in turn have a longer life span as compared to larger workers produced in larger colonies. With the switch to cooperative foraging in growing colonies individual workers become less important for the colony caused by their increasing redundancy. Alternatively a trade of between growth and life span may lead to the results found in this study. A further comparative analysis to study the effect of colony size on life span showed a correlation between queen and worker life span when colony size is taken into account. While neither worker nor queen life span was associated with colony size, the differences between queen and worker life span increase with larger average colony sizes across all eusocial Hymenoptera. As colony size affects both queen and worker life span, I aimed to understand which factors lead to the small colony sizes displayed by some ant species. I therefore analyzed per-capita productivity at different colony sizes of eight cavity dwelling ant species. Most colonies of the study species grew larger than optimal productivity predicted. Larger colony size was shown to increase colony homeostasis, the predictability of future productivity and in turn the survival probability of the colony. I also showed that species that deploy an individual foraging mode may circumvent the density dependent decline in foraging success by splitting the colony to several nest sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most consistent feature of Wiskott Aldrich syndrome (WAS) is profound thrombocytopenia with small platelets. The responsible gene encodes WAS protein (WASP), which functions in leucocytes as an actin filament nucleating agent -yet- actin filament nucleation proceeds normally in patient platelets regarding shape change, filopodia and lamellipodia generation. Because WASP localizes in the platelet membrane skeleton and is mobilized by alphaIIbbeta3 integrin outside-in signalling, we questioned whether its function might be linked to integrin. Agonist-induced alphaIIbbeta3 activation (PAC-1 binding) was normal for patient platelets, indicating normal integrin inside-out signalling. Inside-out signalling (fibrinogen, JON/A binding) was also normal for wasp-deficient murine platelets. However, adherence/spreading on immobilized fibrinogen was decreased for patient platelets and wasp-deficient murine platelets, indicating decreased integrin outside-in responses. Another integrin outside-in dependent response, fibrin clot retraction, involving contraction of the post-aggregation actin cytoskeleton, was also decreased for patient platelets and wasp-deficient murine platelets. Rebleeding from tail cuts was more frequent for wasp-deficient mice, suggesting decreased stabilisation of the primary platelet plug. In contrast, phosphatidylserine exposure, a pro-coagulant response, was enhanced for WASP-deficient patient and murine platelets. The collective results reveal a novel function for WASP in regulating pro-aggregatory and pro-coagulant responses downstream of integrin outside-in signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Courtship behaviour and associated morphological characters are believed to evolve under diversifying sexual selection. In Hymenoptera, sexually dimorphic antennal structures, the 'tyloids', show a large variability. Although crucial for functional interpretation, the link between tyloid morphology and courtship behaviour has gained only limited attention. Here, we investigate antennal morphology and antennal courtship in the parasitoid wasp Syrphoctonus tarsatorius (Hymenoptera: Ichneumonidae: Diplazontinae). We confirm the glandular nature of the tyloids by light and scanning electron microscopy. Moreover, we report a new form of antennation during courtship, antennal double-coiling, which links morphology and behaviour by bringing the tyloids in direct contact with the antennae of the female, thus probably facilitating the transfer of a contact pheromone. We show that a change in haemolymph pressure is the activator of the antennal movement and that it can be reproduced in the laboratory using amputated antennae. Investigations of antennal structure and movement in three additional hymenopteran species suggest that the number and location of tyloids coincide with the modality of antennal coiling. Our method for simulating antennal movement will enable retrieving information about courtship behaviour from museum specimens, thus leading to a better understanding of the evolution of courtship behaviour in Hymenoptera.