985 resultados para ESPECTROSCOPIA C-13 NMR
Resumo:
A combined Sr, O and C isotope study has been carried out in the Pucara basin, central Peru, to compare local isotopic trends of the San Vicente and Shalipayco Zn-Pb Mississippi Valley-type (MVT) deposits with regional geochemical patterns of the sedimentary host basin. Gypsum, limestone and regional replacement dolomite yield Sr-87/Sr-86 ratios that fall within or slightly below the published range of seawater Sr-87/Sr-86 values for the Lower Jurassic and the Upper Triassic. Our data indicate that the Sr isotopic composition of seawater between the Hettangian and the Toarcian may extend to lower Sr-87/Sr-86 ratios than previously published values. An Sr-87-enrichment is noted in (1) carbonate rocks from the lowermost part of the Pucara basin, and (2) different carbonate generations at the MVT deposits. This indicates that host rocks at MVT deposits and in the lowermost part of the carbonate sequence interacted with Sr-87-enriched fluids. The fluids acquired their radiogenic nature by interaction with lithologies underlying the carbonate rocks of the Pucara basin. The San Ramon granite, similar Permo-Triassic intrusions and their elastic derivatives in the Mitu Group are likely sources of radiogenic Sr-87. The Brazilian shield and its erosion products are an additional potential source of radiogenic Sr-87. Volcanic rocks of the Mitu Group are not a significant source for radiogenic Sr-87; however, molasse-type sedimentary rocks and volcaniclastic rocks cannot be ruled out as a possible source of radiogenic Sr-87. The marked enrichment in Sr-87 of carbonates toward the lower part of the Pucara Group is accompanied by only a slight decrease in delta(18)O values and essentially no change in delta(13)C values, whereas replacement dolomite and sparry carbonates at the MVT deposits display a coherent trend of progressive Sr-87-enrichment, and O-18- and C-13-depletion. The depletion in O-18 in carbonates from the MVT deposits are likely related to a temperature increase, possibly coupled with a O-18-enrichment of the ore-forming fluids. Progressively lower delta(13)C values throughout the paragenetic sequence at the MVT deposits are interpreted as a gradually more important contribution from organically derived carbon. Quantitative calculations show that a single fluid-rock interaction model satisfactorily reproduces the marked Sr-87-enrichment and the slight decrease in delta(18)O values in carbonate rocks from the lower part of the Pucara Group. By contrast, the isotopic covariation trends of the MVT deposits are better reproduced by a model combining fluid mixing and fluid-rock interaction. The modelled ore-bearing fluids have a range of compositions between a hot, saline, radiogenic brine that had interacted with lithologies underlying the Pucara sequence and cooler, dilute brines possibly representing local fluids within the Pucara sequence. The composition of the local fluids varies according to the nature of the lithologies present in the neighborhood of the different MVT deposits. The proportion of the radiogenic fluid in the modelled fluid mixtures interacting with the carbonate host rocks at the MVT deposits decreases as one moves up in the stratigraphic sequence of the Pucara Group.
Resumo:
A preparation of organic working standards for the online measurement of C-13/C-12 and O-18/O-16 ratios in biological material is presented. The organic working standards are simple and inexpensive C-3 and C-4 carbohydrates ( sugars or cellulose) from distinct geographic origin, including white sugar, toilet and XEROX papers from Switzerland, maize from Ivory Coast, cane sugar from Brazil, papyrus from Egypt, and the core of the stem of a Cyperus papyrus plant from Kenya. These photosynthetic products were compared with International Atomic Energy standards CH-3 and CH-6 and other calibration materials. The presented working standards cover a 15 parts per thousand range of C-13/C-12 ratios and 9 parts per thousand for O-18/O-16, with a precision < +/- 0.2 parts per thousand for n > 10.
Resumo:
The deposition of Late Pleistocene and Holocene sediments in the high-altitude lake Meidsee (located at an altitude of 2661 m a.s.l. in the Southwestern Alps) strikingly coincided with global ice-sheet and mountain-glacier decay in the Alpine forelands and the formation of perialpine lakes. Radiocarbon ages of bottom-core sediments point out (pre-) Holocene ice retreat below 2700 m a.s.l., at about 16, 13, 10, and 9 cal. kyr BP. The Meidsee sedimentary record therefore provides information about the high-altitude Alpine landscape evolution since the Late Pleistocene/Holocene deglaciation in the Swiss Southwestern Alps. Prior to 5 cal. kyr BP, the C/N ratio and the isotopic composition of sedimentary organic matter (delta N-15(org), delta C-13(org)) indicate the deposition of algal-derived organic matter with limited input of terrestrial organic matter. The early Holocene and the Holocene climatic optimum (between 7.0 and 5.5 cal. kyr BP) were characterized by low erosion (decreasing magnetic susceptibility, chi) and high content of organic matter (C-org > 13 wt.%), enriched in C-13(org) (>-18 parts per thousand) with a low C/N (similar to 10) ratio, typical of modern algal matter derived from in situ production. During the late Holocene, there was a long-term increasing contribution of terrestrial organic matter into the lake (C/N > 11), with maxima between 2.4 and 0.9 cal. kyr BP. A major environmental change took place 800 years ago, with an abrupt decrease in the relative contribution of terrestrial organic material into the lake compared with aquatic organic material which subsequently largely dominated (C/N drop from 16 to 10). Nonetheless, this event was marked by a rise in soil erosion (chi), in nutrients input (N and P contents) and in anthropogenic lead deposition, suggesting a human disturbance of Alpine ecosystems 800 years ago. Indeed, this time period coincided with the migration of the Walser Alemannic people in the region, who settled at relatively high altitude in the Southwestern Alps for farming and maintaining Alpine passes.
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
We apply a new X-ray scattering approach to the study of melt-spun filaments of tri-block and random terpolymers prepared from lactide, caprolactone and glycolide. Both terpolymers contain random sequences, in both cases the overall fraction of lactide units is similar to 0.7 and C-13 and H-1 NMR shows the lactide sequence length to be similar to 9-10. A novel representation of the X-ray fibre pattern as series of spherical harmonic functions considerably facilitates the comparison of the scattering from the minority crystalline phase with hot drawn fibres prepared from the poly(L-lactide) homopolymer. Although the fibres exhibit rather disordered structures we show that the crystal structure is equivalent to that displayed by poly(L-lactide) for both the block and random terpolymers. There are variations in the development of a two-phase structure which reflect the differences in the chain architectures. There is evidence that the random terpolymer includes non-lactide units in to the crystal interfaces to achieve a well defined two-phase structure. (c) 2005 Published by Elsevier Ltd.
Resumo:
Molybdenum(II) complexes [MOX(CO)(2)(eta(3)-allyl)(CH3CN)(2)] (X = Cl or Br) were encapsulated in an aluminium-pillared natural clay or a porous clay heterostructure and allowed to react with bidentate diimine ligands. All the materials obtained were characterised by several solid-state techniques. Powder XRD, and Al-27 and Si-29 MAS NMR were used to investigate the integrity of the pillared clay during the modification treatments. C-13 CP MAS NMR, FTIR, elemental analyses and low-temperature nitrogen adsorption showed that the immobilisation of the precursor complexes was successful as well as the in situ ligand-substitution reaction. The new complex [MoBr(CO)(2)(eta(3)-allyl)(2-aminodipyridyl)] was characterised by single-crystal X-ray diffraction and spectroscopic techniques, and NMR studies were used to investigate its fluxional behaviour in solution. The prepared materials are active for the oxidation of cis-cyclooctene using tert-butyl hydroperoxide as oxidant, though the activity of the isolated complexes is higher. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
[15-(CH3)-C-13-H-2]-dihydroartemisinic acid (2a) and [15-(CH3)-H-2]-dihydroartemisinic acid (2b) have been fed via the root to intact Artemisia annua plants and their transformations studied in vivo by one-dimensional H-2 NMR spectroscopy and two-dimensional, C-13-H-2 correlation NMR spectroscopy (C-13-(2) H COSY). Labelled dihydroartemisinic acid was transformed into 16 12-carboxy-amorphane and cadinane sesquiterpenes within a few days in the aerial parts of A. annua, although transformations in the root were much slower and more limited. Fifteen of these 16 metabolites have been reported previously as natural products from A. annua. Evidence is presented that the first step in the transformation of dihydroartemisinic acid in vivo is the formation of allylic hydroperoxides by the reaction of molecular oxygen with the Delta(4,5)-double bond in this compound. The origin of all 16 secondary metabolites might then be explained by the known further reactions of such hydroperoxides. The qualitative pattern for the transformations of dihydroartemisinic acid in vivo was essentially unaltered when a comparison was made between plants, which had been kept alive and plants which were allowed to die after feeding of the labelled precursor. This, coupled with the observation that the pattern of transformations of 2 in vivo demonstrated very close parallels with the spontaneous autoxidation chemistry for 2, which we have recently demonstrated in vitro, has lead us to conclude that the main 'metabolic route' for dihydroartemisinic acid in A. annua involves its spontaneous autoxidation and the subsequent spontaneous reactions of allylic hydroperoxides which are derived from 2. There may be no need to invoke the participation of enzymes in any of the later biogenetic steps leading to all 16 of the labelled 11,13-dihydro-amorphane sesquiterpenes which are found in A. annua as natural products. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Artemisinic acid labeled with both C-13 and H-2 at the 15-position has been fed to intact plants of Artemisia annua via the cut stem, and its in vivo transformations studied by 1D- and 2D-NMR spectroscopy. Seven labeled metabolites have been isolated, all of which are known as natural products from this species. The transformations of artemisinic acid-as observed both for a group of plants, which was kept alive by hydroponic administration of water and for a group, which was allowed to die by desiccation-closely paralleled those, which have been recently described for its 11,13-dihydro analog, dihydroartemisinic acid. It seems likely therefore that similar mechanisms, involving spontaneous autoxidation of the Delta(4,5) double bond in both artemisinic acid and dihydroartemisinic acid and subsequent rearrangements of the resultant allylic hydroperoxides, may be involved in the biological transformations, which are undergone by both compounds. All of the sesquiterpene metabolites, which were obtained from in vivo transformations of artemisinic acid retained their unsaturation at the 11,13-position, and there was no evidence for conversion into any 11,13-dihydro metabolite, including artemisinin, the antimalarial drug, which is produced by A. annua. This observation led to the proposal of a unified biosynthetic scheme, which accounts for the biogenesis of many of the amorphane and cadinane sesquiterpenes that have been isolated as natural products from A. annua. In this scheme, there is a bifurcation in the biosynthetic pathway starting from amorpha-4,11-diene leading to either artemisinic acid or dihydroartemisinic acid; these two committed precursors are then, respectively, the parents for the two large families of highly oxygenated 11,13-dehydro and 11,13-dihydro sesquiterpene metabolites, which are known from this species. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
[15-(CH3)-C-13-H-2]-dihydro-epi-deoxyarteannuin B (4a) has been fed to intact Artemisia annua plants via the root and three labeled metabolites (17a-19a) have been identified by 1D- and 2D-NMR spectroscopies. The in vivo transformations of 4a in A. annua are proposed to involve enzymatically-mediated processes in addition to possible spontaneous autoxidation. In the hypothetical spontaneous autoxidation pathway, the tri-substituted double bond in 4a appears to have undergone 'ene-type' reaction with oxygen to form an allylic hydroperoxide, which subsequently rearranges to the allylic hydroxyl group in the metabolite 3 alpha-hydroxy-dihydro-epi-deoxyarteannuin B (17a). In the enzymatically-mediated pathways, compound 17a has then been converted to its acetyl derivative, 3 alpha-acetoxy-dihydro-epi-deoxyarteannuin B (18a), while oxidation of 4a at the 'unactivated' 9-position has yielded 9 beta-hydroxy-dihydro-epi-deoxyarteannuin B (19a). Although all of the natural products artemisinin ( 1), arteannuin K ( 7), arteannuin L ( 8), and arteannuin M ( 9) have been suggested previously as hypothetical metabolites from dihydro-epi-deoxyarteannuin B in A. annua, none were isolated in labeled form in this study. It is argued that the nature of the transformations undergone by compound 4a are more consistent with a degradative metabolism, designed to eliminate this compound from the plant, rather than with a role as a late precursor in the biosynthesis of artemisinin or other natural products from A. annua. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
New lanthanide complexes of 3-hydroxypicolinic acid (HpicOH) were prepared: [Ln(H2O)(picOH)(2)(mu-HpicO)].3H(2)O (Ln = Eu, Tb, Er). The complexes were characterized using photoluminescence, infrared, Raman, and H-1 NMR spectroscopy, and elemental analysis. The crystal structure of [Eu(H2O)(picOH)(2)(mu-HpicO)] . 3H(2)O 1 was determined by X-ray diffraction. Compound 1 crystallizes in a monoclinic system with space group P2(1)/c and cell parameters a = 9.105(13) Angstrom, b = 18.796(25) Angstrom, and c = 13.531(17) Angstrom, and beta = 104.86(1) deg. The 3-hydroxypicolinate ligands coordinate through both N,O- or O,O- chelation to the lanthanide ions, as shown by X-ray and spectroscopic results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes; the Eu(III) complex was investigated in more detail. The Eu(III) compound is highly luminescent and acts as a photoactive center in nanocomposite materials whose host matrixes are silica nanoparticles.
Resumo:
The vinylogous aldol reaction between appropriate aldehydes and furan-based silyloxy diene synthon generated from 3-benzyl-5H-furan-2-one (3) afforded two truncated lactone analogues [compounds (4) and (5)] of nostoclides (2). The compounds were fully characterized by IR, NMR (H-1 and C-13), 2D NMR spectroscopy experiments (HMBC, HSQC and NOESY), MS spectrometry and X-ray crystallography. Compounds (4) and (5) crystallized in the space group P2(1)2(1)2(1) and P2(1)/c, respectively. Although expected correlations between hydrogen atoms in spatial close proximity were not observed for compound (5) using NMR, the stereochemistry of the exocyclic double bond of both (4) and (5) was unambiguously determined to be Z and E, respectively, using X-ray crystallography. The packing of both compounds within the crystal are stabilized by non-classical inter-molecular hydrogen bonds. DFT calculations (B3LYP/6-31+G* level) confirmed that the crystal structures possessed the lowest energies in the gas phase when compared to their geometric isomers. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Two new complex salts of the form (Bu4N)(2)[Ni(L)(2)] (1) and (Ph4P)(2)[Ni(L)(2)] (2) and four heteroleptic complexes cis-M(PPh3)(2)(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2N=CS2] and cis-M(PPh3)(2)(L') [M = Pd(II) (5), Pt(II) (6), L' = C6H5SO2N=CS2] were prepared and characterized by elemental analyses, IR, H-1, C-13 and P-31 NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)(2)(SH)(2), 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H center dot center dot center dot Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with sigma(rt) values similar to 10 (5) S cm (1) show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.
Resumo:
Resol type resins were prepared in alkaline conditions (potassium hydroxide or potassium carbonate) using furfural obtained by acid hydrolysis of abundant renewable resources from agricultural and forestry waste residues. The structures of the resins were fully determined by H-1, C-13, and 2D NMR spectrometries with the help of four models compounds synthesized specially for this study. MALDI-Tof mass spectrometry experiments indicated that a majority of linear oligomers and a minority of cyclic ones constituted them. Composites were prepared with furfural-phenol resins and sisal fibers. These fibers were chosen mainly because they came from natural lignocellulosic material and they presented excellent mechanical microscopy images indicated that the composites displayed excellent adhesion between resin and fibers. Impact strength measurement showed that mild conditions were more suitable to prepare thermosets. Nevertheless, mild conditions induced a high-diffusion coefficient for water absorption by composites. Composites with good properties could be prepared using high proportion of materials obtained from biomass without formaldehyde. (c) 2008 Wiley Periodicals, Inc.
Resumo:
Four new diorganotin(IV) complexes have been prepared from R(2)SnCl(2) (R = Me, Ph) with the ligands 5-hydroxy-3-metyl-5-phenyl-1-(S-benzildithiocarbazate)-pyrazoline (H(2)L(1)) and 5-hydroxy-3-methyl-5-phenyl-1-(2-thiophenecarboxylic)-pyrazoline (H(2)L(2)). The complexes were characterized by elemental analysis, IR. (1)H (13)C, (119)Sn NMR and Mossbauer spectroscopes The complexes [Me(2)SnL(1)], [Ph(2)SnL(1)] and [Me(2)SnL(2)] were also studied by single crystal X-ray diffraction and the results showed that the Sn(IV) central atom of the complexes adopts a distorted trigonal bipyramidal (TBP) geometry with the N atom of the ONX-tridentate (X = O and S) ligand and two organic groups occupying equatorial sites. The C-Sn-C angles for [Me(2)Sn(L(1))] and [Ph(2)Sn(L(1))] were calculated using a correlation between (119)Sn Mossbauer and X-ray crystallographic data based on the point-charge model Theoretical calculations were performed with the B3LYP density functional employing 3-21G(*) and DZVP all electron basis sets showing good agreement with experimental findings General and Sn(IV) specific IR harmonic frequency scale factors for both basis sets were obtained from comparison with selected experimental frequencies (C) 2010 Elsevier B V All rights reserved