973 resultados para ELKO spinor fields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualizing symmetric patterns in the data often helps the domain scientists make important observations and gain insights about the underlying experiment. Detecting symmetry in scalar fields is a nascent area of research and existing methods that detect symmetry are either not robust in the presence of noise or computationally costly. We propose a data structure called the augmented extremum graph and use it to design a novel symmetry detection method based on robust estimation of distances. The augmented extremum graph captures both topological and geometric information of the scalar field and enables robust and computationally efficient detection of symmetry. We apply the proposed method to detect symmetries in cryo-electron microscopy datasets and the experiments demonstrate that the algorithm is capable of detecting symmetry even in the presence of significant noise. We describe novel applications that use the detected symmetry to enhance visualization of scalar field data and facilitate their exploration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In well dispersed multi-wall carbon nanotube-polystyrene composite of 15 wt%, with room temperature conductivity of similar to 5 S/cm and resistivity ratio R-2K/R-200K] of similar to 1.4, the temperature dependence of conductivity follows a power-law behavior. The conductivity increases with magnetic field for a wide range of temperature (2-200 K), and power-law fits to conductivity data show that localization length (xi) increases with magnetic field, resulting in a large negative magnetoresistance (MR). At 50T, the negative MR at 8 K is similar to 13% and it shows a maximum at 90K (similar to 25%). This unusually large negative MR indicates that the field is delocalizing the charge carriers even at higher temperatures, apart from the smaller weak localization contribution at T < 20 K. This field-induced delocalization mechanism of MR can provide insight into the intra and inter tube transport. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on an experimental study on the ploughing or orthogonal cutting in sand. Plane strain cutting or ploughing experiments were carried out on model Ottawa sand while being imaged at high resolution. The images obtained were further processed using image analysis and the evolution of the velocity and deformation fields were obtained from these analysis. The deformation fields show the presence of a clear shear zone in which the sand accrues deformation. A net change in the direction of the velocity of the sand is also clearly visible. The effective depth of cut of the sand also increases with continuous cutting as the sand reposes on itself. This deformation mechanics at the incipient stages of cutting is similar to that observed in metal cutting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the issue of stability of recently proposed significantly super-Chandrasekhar white dwarfs. We present stable solutions of magnetostatic equilibrium models for super-Chandrasekhar white dwarfs pertaining to various magnetic field profiles. This has been obtained by self-consistently including the effects of the magnetic pressure gradient and total magnetic density in a general relativistic framework. We estimate that the maximum stable mass of magnetized white dwarfs could be more than 3 solar mass. This is very useful to explain peculiar, overluminous type Ia supernovae which do not conform to the traditional Chandrasekhar mass-limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum emulation property of the cold atoms has generated a lot of interest in studying systems with synthetic gauge fields. In this article, we describe the physics of two component Fermi gas in the presence of synthetic non-Abelian SU(2) gauge fields. Even for the non-interacting system with the gauge fields, there is an interesting change in the topology of the Fermi surface by tuning only the gauge field strength. When a trapping potential is used in conjunction with the gauge fields, the non-interacting system has the ability to produce novel Hamiltonians and show characteristic change in the density profile of the cloud. Without trap, the gauge fields act as an attractive interaction amplifier and for special kinds of gauge field configurations, there are two-body bound states for any attraction even in three dimensions. For a many body system, the gauge fields can induce a crossover from a weak superfluid to a strong superfluid with transition temperature as high as the Fermi temperature. The superfluid state obtained for a very large gauge field strength is a superfluid of new kind of bosons, called ``rashbons'', the properties of which are independent of its constituent two component fermions and are solely determined by the gauge field strength. We also discuss the collective excitations over the superfluid ground states and the experimental relevance of the physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments using three point bend specimens of Mg single crystals have revealed that tensile twins of {10 (1) over bar2}-type form profusely near a notch tip and enhance the fracture toughness through large plastic dissipation. In this work, 3D finite element simulations of these experiments are carried out using a crystal plasticity framework which includes slip and twinning to gain insights on the mechanics of fracture. The predicted load-displacement curves, slip and tensile twinning activities from finite element analysis corroborate well with the experimental observations. The numerical results are used to explore the 3D nature of the crack tip stress, plastic slip and twin volume fraction distributions near the notch root. The occurrence of tensile twinning is rationalized from the variation of normal stress ahead of the notch tip. Further, deflection of the crack path at twin-twin intersections observed in the experiments is examined from an energy standpoint by modeling discrete twins close to the notch root.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complexity in visualizing volumetric data often limits the scope of direct exploration of scalar fields. Isocontour extraction is a popular method for exploring scalar fields because of its simplicity in presenting features in the data. In this paper, we present a novel representation of contours with the aim of studying the similarity relationship between the contours. The representation maps contours to points in a high-dimensional transformation-invariant descriptor space. We leverage the power of this representation to design a clustering based algorithm for detecting symmetric regions in a scalar field. Symmetry detection is a challenging problem because it demands both segmentation of the data and identification of transformation invariant segments. While the former task can be addressed using topological analysis of scalar fields, the latter requires geometry based solutions. Our approach combines the two by utilizing the contour tree for segmenting the data and the descriptor space for determining transformation invariance. We discuss two applications, query driven exploration and asymmetry visualization, that demonstrate the effectiveness of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using high-resolution observations of nearly co-temporal and co-spatial Solar Optical Telescope spectropolarimeter and X-Ray Telescope coronal X-ray data onboard Hinode, we revisit the problematic relationship between global magnetic quantities and coronal X-ray brightness. Co-aligned vector magnetogram and X-ray data were used for this study. The total X-ray brightness over active regions is well correlated with integrated magnetic quantities such as the total unsigned magnetic flux, the total unsigned vertical current, and the area-integrated square of the vertical and horizontal magnetic fields. On accounting for the inter-dependence of the magnetic quantities, we inferred that the total magnetic flux is the primary determinant of the observed integrated X-ray brightness. Our observations indicate that a stronger coronal X-ray flux is not related to a higher non-potentiality of active-region magnetic fields. The data even suggest a slightly negative correlation between X-ray brightness and a proxy of active-region non-potentiality. Although there are small numerical differences in the established correlations, the main conclusions are qualitatively consistent over two different X-ray filters, the Al-poly and Ti-poly filters, which confirms the strength of our conclusions and validate and extend earlier studies that used low-resolution data. We discuss the implications of our results and the constraints they set on theories of solar coronal heating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an enhanced actuation in bulk carbon nanotubes (CNTs) under coupled electric and magnetic fields, which is much higher than that evaluated in the presence of individual fields. Coupled electric and magnetic fields induce a directional actuation demonstrating a transformation from polarity independent to dependent actuation behavior of CNTs. Both qualitative and quantitative analyses are performed to understand this transformation in the bulk CNTs. Moreover, actuations along radial and axial directions of CNTs have also demonstrated a similar directional behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ``synthetic dimension'' proposal A. Celi et al., Phys. Rev. Lett. 112, 043001 (2014)] uses atoms with M internal states (''flavors'') in a one-dimensional (1D) optical lattice, to realize a hopping Hamiltonian equivalent to the Hofstadter model (tight-binding model with a given magnetic flux per plaquette) on an M-sites-wide square lattice strip. We investigate the physics of SU(M) symmetric interactions in the synthetic dimension system. We show that this system is equivalent to particles with SU(M) symmetric interactions] experiencing an SU(M) Zeeman field at each lattice site and a non-Abelian SU(M) gauge potential that affects their hopping. This equivalence brings out the possibility of generating nonlocal interactions between particles at different sites of the optical lattice. In addition, the gauge field induces a flavor-orbital coupling, which mitigates the ``baryon breaking'' effect of the Zeeman field. For M particles, concomitantly, the SU(M) singlet baryon which is site localized in the usual 1D optical lattice, is deformed to a nonlocal object (''squished baryon''). We conclusively demonstrate this effect by analytical arguments and exact (numerical) diagonalization studies. Our study promises a rich many-body phase diagram for this system. It also uncovers the possibility of using the synthetic dimension system to laboratory realize condensed-matter models such as the SU(M) random flux model, inconceivable in conventional experimental systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech enhancement in stationary noise is addressed using the ideal channel selection framework. In order to estimate the binary mask, we propose to classify each time-frequency (T-F) bin of the noisy signal as speech or noise using Discriminative Random Fields (DRF). The DRF function contains two terms - an enhancement function and a smoothing term. On each T-F bin, we propose to use an enhancement function based on likelihood ratio test for speech presence, while Ising model is used as smoothing function for spectro-temporal continuity in the estimated binary mask. The effect of the smoothing function over successive iterations is found to reduce musical noise as opposed to using only enhancement function. The binary mask is inferred from the noisy signal using Iterated Conditional Modes (ICM) algorithm. Sentences from NOIZEUS corpus are evaluated from 0 dB to 15 dB Signal to Noise Ratio (SNR) in 4 kinds of additive noise settings: additive white Gaussian noise, car noise, street noise and pink noise. The reconstructed speech using the proposed technique is evaluated in terms of average segmental SNR, Perceptual Evaluation of Speech Quality (PESQ) and Mean opinion Score (MOS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber-reinforced plastics (FRPs) are typically difficult to machine due to their highly heterogeneous and anisotropic nature and the presence of two phases (fiber and matrix) with vastly different strengths and stiffnesses. Typical machining damage mechanisms in FRPs include series of brittle fractures (especially for thermosets) due to shearing and cracking of matrix material, fiber pull-outs, burring, fuzzing, fiber-matrix debonding, etc. With the aim of understanding the influence of the pronounced heterogeneity and anisotropy observed in FRPs, ``Idealized'' Carbon FRP (I-CFRP) plates were prepared using epoxy resin with embedded equispaced tows of carbon fibers. Orthogonal cutting of these I-CFRPs was carried out, and the chip formation characteristics, cutting force signals and strain distributions obtained during machining were analyzed using the Digital Image Correlation (DIC) technique. In addition, the same procedure was repeated on Uni-Directional CFRPs (UD-CFRPs). Chip formation mechanisms in FRPs were found to depend on the depth of cut and fiber orientation with pure epoxy showing a pronounced ``size effect.'' Experimental results indicate that in-situ full field strain measurements from DIC coupled with force measurements using dynamometry provide an adequate measure of anisotropy and heterogeneity during orthogonal cutting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the 'average stress in the matrix' concept of Mori and Tanaka (:Mori, T., Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metall. 21, 571-580) a micromechanical model is presented for the prediction of the elastic fields in coated inclusion composites with imperfect interfaces. The solutions of the effective elastic moduli for this kind of composite are also obtained. In two kinds of composites with coated particulates and fibers, respectively, the interface imperfections are takes to the assumption that the interface displacement discontinues are linearly related to interface tractions like a spring layer of vanishing thickness. The resulting effective shear modulus for each material and the stress fields in the composite are presented under a transverse shear loading situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional axisymmetric numerical model is presented to study the influence of local magnetic fields on P-doped Si floating zone melting crystal growth in microgravity. The model is developed based on the finite difference method in a boundary-fitted curvilinear coordinate system. Extensive numerical simulations are carried out, and parameters studied include the curved growth interface shape and the magnetic field configurations. Computed results show that the local magnetic field is more effective in reducing the impurity concentration nonuniformity at the growth interface in comparison with the longitudinal magnetic field. Moreover, the curved growth interface causes more serious impurity concentration nonuniformity at the growth interface than the case with a planar growth interface.