989 resultados para ELEVATED CO2


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanisms responsive to hypercapnia (elevated CO2 concentrations) and shaping branchial energy turnover were investigated in isolated perfused gills of two Antarctic Notothenioids (Gobionotothen gibberifrons, Notothenia coriiceps). Branchial oxygen consumption was measured under normo- versus hypercapnic conditions (10,000 ppm CO2) at high extracellular pH values. The fractional costs of ion regulation, protein and RNA synthesis in the energy budgets were determined using specific inhibitors. Overall gill energy turnover was maintained under pH compensated hypercapnia in both Antarctic species as well as in a temperate zoarcid (Zoarces viviparus). However, fractional energy consumption by the examined processes rose drastically in G. gibberifrons (100-180%), and to a lesser extent in N. coriiceps gills (7-56%). In conclusion, high CO2 concentrations under conditions of compensated acidosis induce cost increments in epithelial processes, however, at maintained overall rates of branchial energy turnover.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated ecological, physiological, and skeletal characteristics of the calcifying green alga Halimeda grown at CO2 seeps (pHtotal ? 7.8) and compared them to those at control reefs with ambient CO2 conditions (pHtotal ? 8.1). Six species of Halimeda were recorded at both the high CO2 and control sites. For the two most abundant species Halimeda digitata and Halimeda opuntia we determined in situ light and dark oxygen fluxes and calcification rates, carbon contents and stable isotope signatures. In both species, rates of calcification in the light increased at the high CO2 site compared to controls (131% and 41%, respectively). In the dark, calcification was not affected by elevated CO2 in H. digitata, whereas it was reduced by 167% in H. opuntia, suggesting nocturnal decalcification. Calculated net calcification of both species was similar between seep and control sites, i.e., the observed increased calcification in light compensated for reduced dark calcification. However, inorganic carbon content increased (22%) in H. digitata and decreased (-8%) in H. opuntia at the seep site compared to controls. Significantly, lighter carbon isotope signatures of H. digitata and H. opuntia phylloids at high CO2 (1.01 per mil [parts per thousand] and 1.94 per mil, respectively) indicate increased photosynthetic uptake of CO2 over HCO3- potentially reducing dissolved inorganic carbon limitation at the seep site. Moreover, H. digitata and H. opuntia specimens transplanted for 14 d from the control to the seep site exhibited similar delta13C signatures as specimens grown there. These results suggest that the Halimeda spp. investigated can acclimatize and will likely still be capable to grow and calcify in inline image conditions exceeding most pessimistic future CO2 projections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification (OA) due to atmospheric CO2 rise is expected to influence marine primary productivity. In order to investigate the interactive effects of OA and light changes on diatoms, we grew Phaeodactylum tricornutum, under ambient (390 ppmv; LC) and elevated CO2 (1000 ppmv; HC) conditions for 80 generations, and measured its physiological performance under different light levels (60 µmol/m**2/s, LL; 200 µmol/m**2/s, ML; 460 µmol/m**2/s, HL) for another 25 generations. The specific growth rate of the HC-grown cells was higher (about 12-18%) than that of the LC-grown ones, with the highest under the ML level. With increasing light levels, the effective photochemical yield of PSII (Fv'/Fm') decreased, but was enhanced by the elevated CO2, especially under the HL level. The cells acclimated to the HC condition showed a higher recovery rate of their photochemical yield of PSII compared to the LC-grown cells. For the HC-grown cells, dissolved inorganic carbon or CO2 levels for half saturation of photosynthesis (K1/2 DIC or K1/2 CO2) increased by 11, 55 and 32%, under the LL, ML and HL levels, reflecting a light dependent down-regulation of carbon concentrating mechanisms (CCMs). The linkage between higher level of the CCMs down-regulation and higher growth rate at ML under OA supports the theory that the saved energy from CCMs down-regulation adds on to enhance the growth of the diatom.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing levels of anthropogenic carbon dioxide in the world's oceans are resulting in a decrease in the availability of carbonate ions and a drop in seawater pH. This process, known as ocean acidification, is a potential threat to marine populations via alterations in survival and development. To date, however, little research has examined the effects of ocean acidification on rare or endangered species. To begin to assess the impacts of acidification on endangered northern abalone (Haliotis kamtschatkana) populations, we exposed H. kamtschatkana larvae to various levels of CO2 [400 ppm (ambient), 800 ppm, and 1800 ppm CO2] and measured survival, settlement, shell size, and shell development. Larval survival decreased by ca. 40% in elevated CO2 treatments relative to the 400 ppm control. However, CO2 had no effect on the proportion of surviving larvae that metamorphosed at the end of the experiment. Larval shell abnormalities became apparent in approximately 40% of larvae reared at 800 ppm CO2, and almost all larvae reared at 1800 ppm CO2 either developed an abnormal shell or lacked a shell completely. Of the larvae that did not show shell abnormalities, shell size was reduced by 5% at 800 ppm compared to the control. Overall, larval development of H. kamtschatkana was found to be sensitive to ocean acidification. Near future levels of CO2 will likely pose a significant additional threat to this species, which is already endangered with extinction due in part to limited reproductive output and larval recruitment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification (OA), resulting from increasing dissolved carbon dioxide (CO2) in surface waters, is likely to affect many marine organisms, particularly those that calcify. Recent OA studies have demonstrated negative and/or differential effects of reduced pH on growth, development, calcification and physiology, but most of these have focused on taxa other than calcareous benthic macroalgae. Here we investigate the potential effects of OA on one of the most common coral reef macroalgal genera,Halimeda. Species of Halimeda produce a large proportion of the sand in the tropics and are a major contributor to framework development on reefs because of their rapid calcium carbonate production and high turnover rates. On Palmyra Atoll in the central Pacific, we conducted a manipulative bubbling experiment to investigate the potential effects of OA on growth, calcification and photophysiology of 2 species of Halimeda. Our results suggest that Halimeda is highly susceptible to reduced pH and aragonite saturation state but the magnitude of these effects is species specific. H. opuntiasuffered net dissolution and 15% reduction in photosynthetic capacity, while H. taenicola did not calcify but did not alter photophysiology in experimental treatments. The disparate responses of these species to elevated CO2 partial -pressure (pCO2) may be due to anatomical and physiological differences and could represent a shift in their relative dominance in the face of OA. The ability for a species to exert biological control over calcification and the species specific role of the carbonate skeleton may have important implications for the potential effects of OA on ecological function in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response of three coccolithophores (Emiliania huxleyi, Calcidiscus leptoporus and Syracosphaera pulchra) to elevated partial pressure (pCO2) of carbon dioxide was investigated in batch cultures. For the first time, we also report on the response of the non calcifying (haploid) life stage of these three species. The growth rate, cell size, inorganic (PIC) and organic carbon (POC) of both life stages were measured at two different pCO2 (400and 760 ppm) and their organic and inorganic carbon production calculated. The two lifestages within the same species generally exhibited a similar response to elevated pCO2, theresponse of the haploid stage being often more pronounced than that of the diploid stage. Thegrowth rate was consistently higher at higher pCO2 but the response of other processes varied among species. The calcification rate of C. leptoporus and of S. pulchra did not change at elevated pCO2 while increased in E. huxleyi. The POC production as well as the cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. These results suggest that the non-calcifying stage, is more responsive than the calcifying stage and that the most versatile genera will proliferate in a more acidic ocean rather than all coccolithophores will decline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface ocean absorbs large quantities of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts to form carbonic acid. While this phenomenon, called ocean acidification, has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing) in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium) and heterocystous (Nodularia) cyanobacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO2. This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae for photosynthesis and calcification: CO2 and HCO3 increase; CO32 decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO2 gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO3]. We measured the short-term photosynthetic responses of five macroalgal species with various carbon-use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO2 gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO2, HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO3 increased their use of CO2 in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO2 did so exclusively in all treatments. Although CO2 is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO2 is less energetically expensive than active HCO3 uptake, and so HCO3-using macroalgae may benefit in future seawater with elevated CO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emiliania huxleyi (strain B 92/11) was exposed to different nutrient supply, CO2 and temperature conditions in phosphorus controlled chemostats to investigate effects on organic carbon exudation and partitioning between the pools of particulate organic carbon (POC) and dissolved organic carbon (DOC). 14C incubation measurements for primary production (PP) and extracellular release (ER) were performed. Chemical analysis included the amount and composition of high molecular weight (>1 kDa) dissolved combined carbohydrates (HMW-dCCHO), particulate combined carbohydrates (pCCHO) and the carbon content of transparent exopolymer particles (TEP-C). Applied CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C, and additionally 900 µatm pCO2 at 18 °C simulating a greenhouse ocean scenario. Enhanced nutrient stress by reducing the dilution rate (D) from D = 0.3 /d to D = 0.1 /d (D = µ) induced the strongest response in E. huxleyi. At µ = 0.3 /d, PP was significantly higher at elevated CO2 and temperature and DO14C production correlated to PO14C production in all treatments, resulting in similar percentages of extracellular release (PER; (DO14C production/PP) × 100) averaging 3.74 ± 0.94%. At µ = 0.1 /d, PO14C production decreased significantly, while exudation of DO14C increased. Thus, indicating a stronger partitioning from the particulate to the dissolved pool. Maximum PER of 16.3 ± 2.3% were observed at µ = 0.1 /d at elevated CO2 and temperature. While cell densities remained constant within each treatment and throughout the experiment, concentrations of HMW-dCCHO, pCCHO and TEP were generally higher under enhanced nutrient stress. At µ= 0.3 /d, pCCHO concentration increased significantly with elevated CO2 and temperature. At µ = 0.1 /d, the contribution (mol % C) of HMW-dCCHO to DOC was lower at elevated CO2 and temperature while pCCHO and TEP concentrations were higher. This was most pronounced under greenhouse conditions. Our findings suggest a stronger transformation of primary produced DOC into POC by coagulation of exudates under nutrient limitation. Our results further imply that elevated CO2 and temperature will increase exudation by E. huxleyi and may affect organic carbon partitioning in the ocean due to an enhanced transfer of HMW-dCCHO to TEP by aggregation processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large-scale, long-term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May-June 2008) and after 128 days (July-October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25-28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short-term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large fraction of the carbon dioxide added to the atmosphere by human activity enters the sea, causing ocean acidification. We show that otoliths (aragonite ear bones) of young fish grown under high CO2 (low pH) conditions are larger than normal, contrary to expectation. We hypothesize that CO2 moves freely through the epithelium around the otoliths in young fish, accelerating otolith growth while the local pH is controlled. This is the converse of the effect commonly reported for structural biominerals.