947 resultados para EFFECTIVE PROPERTIES
Resumo:
LaF3. CeF3, CeF3:Tb3+, and CeF3:Tb3+ @LaF3 (core-shell) 2D nanoplates have been successfully synthesized by a facile and effective hydrothermal process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The experimental results indicate that the organic additive, trisodium citrate (Cit(3-)), as a shape modifier has the dynamic effect by adjusting the growth rate of different crystal facets, resulting in forming the anisotropic geometries of the final products. The possible formation mechanisms for different products have been presented. The CeF3, CeF3:Tb3+, and CeF3:Tb3+ @LaF3 (core/shell) nanoplates show characteristic emission of Ce3+ (5d-4f) and Tb3+ (f-f), respectively.
Resumo:
Highly uniform and well-dispersed CeO2 and CeO2:Eu3+ (Sm3+, Tb3+) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO2 nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO2 nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO2:Eu3+ nanocrystals exhibits red-shifting with respect to that of the undoped CeO2 nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO2 nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu3+, Tb3+, Sm3+) in the CeO2 nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO2 nanocrystals to compensate the effective negative charge associated with the trivalent ions.
Resumo:
In this Article, we demonstrate an effective hydrothermal route for the synthesis of multiple PDDA-protected (PDDA = poly(diallyl dimethylammonium) chloride) noble-metal (including silver, platinum, palladium, and gold) nanostructures in the absence of any seeds and surfactants, in which PDDA, an ordinary and water-soluble polyelectrolyte, acts as both a reducing and a stabilizing agent. Under optimal experimental conditions, Ag nanocubes, Pt and Pd nanopolyhedrons, and Au nanoplates can be obtained, which were characterized by transmission electron microscopy, scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. More importantly, the nanostrucfures synthesized show potential applications in surface-enhanced Raman scattering and electrocatalysis, in which Ag nanocubes and Pt nanopolyhedrons were chosen as the examples, respectively.
Resumo:
A series of monodisperse oligo(9,9-di-n-octylfluorene-2,7-vinylene)s (OFVs) with fluorene units up to 11 has been synthesized following a divergent approach. Chain length was found to affect not only photophysical properties but also thermal properties. Absorption and photoluminescence spectra are red-shifted with increasing chain length. The effective conjugated length has been extrapolated to be as long as 19 fluorene vinylene units, indicative of a well-conjugated system. With the number of fluorene units > 5, the oligomers exhibit nematic mesomorphism. Glass transition temperature (T-g) and clearing point temperature (T-c) increase with increasing molecular length and with those of OFV11 up to 71 and 230 degrees C, respectively. The oligomers can form uniform films by solution casting for fabrication of light-emitting diodes. With a device structure of ITO/ PEDOT:PSS/OFV11/Ca/Al, a current efficiency of 0.8 cd.A(-1) at a brightness of 1300 cd.m(-2) along with a maximum brightness of 2690 cd.m(-2) have been realized. This performance is notably superior to that of the corresponding polymer.
Resumo:
Preparation and physical properties of ethylene-vinyl alcohol copolymer (EVOH) crosslinked by enhanced radiation have been studied through various methods. It was found that the most effective agent for irradiation-crosslinking was triallyl isocyanurate (TAIC) among four kinds of polyfunctional monomers. Gel content (65.6%) was formed for EVOH-44 (content of ethylene is 44 mol%) at 200 kGy with 5% TAIC, but for EVOH-32 (content of ethylene is 32 mol%), only 37.4% gel content was formed under the same conditions. This result showed that the more the content of ethylene units comprised in EVOH, the easier the chemical bonds could be formed between different molecular chains. Tensile strength and elastic modulus increased after crosslinking at high test temperature and elongation at break decreased at the same time. Hygroscopicity of EVOH showed noticeable decrease after enhancement radiation-crosslinking.
Resumo:
The blends of low molecular weight triacetin (TAC) and oligomeric poly(1,3-butylene glycol adipate) (PBGA) were used as multiple plasticizers to lubricate poly(lactic acid) (PLA) in this study. The thermal and mechanical properties of plasticized polymers were investigated by means of dynamic mechanical analysis and differential scanning calorimetry. Atomic force microscopy (AFM) was used to analyze the morphologies of the blends. Multiple plasticizers were effective in lowering the glass transition temperature (T-g) and the melting temperature (T-m) of PLA. Moreover, crystallinity of PLA increased with increasing the con-tent of multiple plasticizers. Tensile strength of the blends decreased following the increasing of the plasticizers, but increased in elongation at break. AFM topographic images showed that the multiple plasticizers dispersed between interfibrillar regions. Moreover, the fibrillar crystallite formed the quasicrosslinkings, which is another cause for the increase in elongation at break.
Resumo:
Possible conformers for AunPdm (n = 1-4, m = -1, 0, 1) clusters have been presented and studied by use of density functional theory. The results indicate that for n = 2, linear conformer with C-infinityv symmetry is the most stable for anion species, while for cation and neutral species, conformer with C-2v symmetry is the most stable. For n = 3, 4, conformers with C-2v symmetry (kite-shape) are energetically favored. The calculated electron affinities (EAs) and vertical detachment energies (VDEs) are in good agreement with experiments for n = 1-4. It is also interesting to note that for even n (n = 2, 4), the most stable conformers do not give the best agreement between calculated and experimental EA and VDE values, while for odd n (n = 3), the lowest energy conformer also gives the best agreement. The ionization potentials (IPs) of AunPd clusters are calculated as well.
Resumo:
The europium-substituted heteropolytungstate K13Eu(SiW11O39)(2) was successfully assembled into two lipids by LB technique for the first time. X-ray diffraction has shown a well defined lamellar for the LB films. The LB films have been characterized by fluorescence spectra and the characteristic luminescence behaviors were discussed. The ligand-metal charge transfer band could be observed in the spectra of the LB films, which could not be found in that of heteropolytungstate solid. The results of fluorescence spectra indicate the energy could be effectively transferred from ligands to the Eu3+ ions in the LB films and the luminescence efficiency was increased greatly. The influences of various lipids on the luminescence of polyoxometalates were investigated. The various interactions between monolayer and polyanions have different effect on the luminescence properties of europium-substituted heteropolytungstate.
Resumo:
Ternary complexes of europium and terbium with paraaminobenzoic acid and 1,10-phenanthroline (Eu(p-ABA)(3). phen . 2H(2)O and Tb(p-ABA)(3). phen . 2H(2)O, where p-HABA = paraaminobenzoic acid and phen = 1,10-phenanthroline) were introduced into a silica matrix by sol-gel method. The luminescence behavior of the complexes in silica gels was studied in comparison with the. corresponding solid-state complexes by means of emission, excitation spectra, and Lifetimes. Within the range of effective dopant concentrations, the luminescence intensities of rare-earth complexes in silica gel increase with the increasing of their dopant concentration. The lifetimes of rare-earth ions (Eu3+ and-Tb3+) in silica gel doped with europium and terbium complexes become longer than those in pure complexes. Very small amounts of rare-earth complexes doped in silica gel matrix can exhibit excellent luminescence properties, (C) 1998 Elsevier Science Ltd.
Resumo:
The toughening effect of the content of a core-shell poly(butyl acrylate)/poly(methyl methacrylate) latex polymer (PBA-cs-PMMA) on the mechanical properties, morphology and compatibility of its blends with polycarbonate(PC), i.e., PC/PBA-cs-PMMa, was studied. The mechanical properties of the blends are strongly affected by varying the content of PBA-cs-PMMA in the blend. When the PBA-cs-PMMA content is only 5 wt.-%, the impact strength of PC/PBA-cs-PMMA is almost 19 times as high as that of pure PC, indicating that PBA-cs-PMMA is a very good impact modifier for PC. With increasing interphacial layer thickness and decreasing interphacial tension, the interphacial activity becomes more and more effective and, at the same time, miscibility increases too.
Resumo:
Two isomorphous new candidates [M(mu(4)-pz25dc)](n) (M = Cd, 1; Zn, 2; pz25dc = pyrazine-2,5-dicarboxylato)for nonlinear optical (NLO) materials have been synthesized hydrothermally and characterized crystallographically as pillared-layer three-nodal frameworks with one four-connected metal nodes and two crystallographically different four-connected ligand nodes. Their optical non-linearities are measured by the Z-Scan technique with an 8 ns pulsed laser at 532 nm. These two coordination polymers both exhibit strong NLO absorptive abilities [alpha(2) = (63 +/- 6) x 10 (12) mW (1) 1, ( 46 +/- 6) x 10 (11) mW (1) 2] and effective self-focusing performance [n(2) = (67 +/- 5) x 10 (18) 1, (13 +/- 3) x 10 (18) m(2) W (1) 2] in 1.02 x 10 (4) 1 and 1.05 x 10 (4) mol dm (3) 2 DMF solution separately. The values of the limiting threshold are also measured from the optical limiting experimental data. The heavy atom effect plays important role in the enhancement of optical non-linearities and optical limiting properties. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
The task in text retrieval is to find the subset of a collection of documents relevant to a user's information request, usually expressed as a set of words. Classically, documents and queries are represented as vectors of word counts. In its simplest form, relevance is defined to be the dot product between a document and a query vector--a measure of the number of common terms. A central difficulty in text retrieval is that the presence or absence of a word is not sufficient to determine relevance to a query. Linear dimensionality reduction has been proposed as a technique for extracting underlying structure from the document collection. In some domains (such as vision) dimensionality reduction reduces computational complexity. In text retrieval it is more often used to improve retrieval performance. We propose an alternative and novel technique that produces sparse representations constructed from sets of highly-related words. Documents and queries are represented by their distance to these sets. and relevance is measured by the number of common clusters. This technique significantly improves retrieval performance, is efficient to compute and shares properties with the optimal linear projection operator and the independent components of documents.
Resumo:
Sound propagation in shallow water is characterized by interaction with the oceans surface, volume, and bottom. In many coastal margin regions, including the Eastern U.S. continental shelf and the coastal seas of China, the bottom is composed of a depositional sandy-silty top layer. Previous measurements of narrow and broadband sound transmission at frequencies from 100 Hz to 1 kHz in these regions are consistent with waveguide calculations based on depth and frequency dependent sound speed, attenuation and density profiles. Theoretical predictions for the frequency dependence of attenuation vary from quadratic for the porous media model of M.A. Biot to linear for various competing models. Results from experiments performed under known conditions with sandy bottoms, however, have agreed with attenuation proportional to f1.84, which is slightly less than the theoretical value of f2 [Zhou and Zhang, J. Acoust. Soc. Am. 117, 2494]. This dissertation presents a reexamination of the fundamental considerations in the Biot derivation and leads to a simplification of the theory that can be coupled with site-specific, depth dependent attenuation and sound speed profiles to explain the observed frequency dependence. Long-range sound transmission measurements in a known waveguide can be used to estimate the site-specific sediment attenuation properties, but the costs and time associated with such at-sea experiments using traditional measurement techniques can be prohibitive. Here a new measurement tool consisting of an autonomous underwater vehicle and a small, low noise, towed hydrophone array was developed and used to obtain accurate long-range sound transmission measurements efficiently and cost effectively. To demonstrate this capability and to determine the modal and intrinsic attenuation characteristics, experiments were conducted in a carefully surveyed area in Nantucket Sound. A best-fit comparison between measured results and calculated results, while varying attenuation parameters, revealed the estimated power law exponent to be 1.87 between 220.5 and 1228 Hz. These results demonstrate the utility of this new cost effective and accurate measurement system. The sound transmission results, when compared with calculations based on the modified Biot theory, are shown to explain the observed frequency dependence.
Resumo:
There has been considerable work done in the study of Web reference streams: sequences of requests for Web objects. In particular, many studies have looked at the locality properties of such streams, because of the impact of locality on the design and performance of caching and prefetching systems. However, a general framework for understanding why reference streams exhibit given locality properties has not yet emerged. In this work we take a first step in this direction, based on viewing the Web as a set of reference streams that are transformed by Web components (clients, servers, and intermediaries). We propose a graph-based framework for describing this collection of streams and components. We identify three basic stream transformations that occur at nodes of the graph: aggregation, disaggregation and filtering, and we show how these transformations can be used to abstract the effects of different Web components on their associated reference streams. This view allows a structured approach to the analysis of why reference streams show given properties at different points in the Web. Applying this approach to the study of locality requires good metrics for locality. These metrics must meet three criteria: 1) they must accurately capture temporal locality; 2) they must be independent of trace artifacts such as trace length; and 3) they must not involve manual procedures or model-based assumptions. We describe two metrics meeting these criteria that each capture a different kind of temporal locality in reference streams. The popularity component of temporal locality is captured by entropy, while the correlation component is captured by interreference coefficient of variation. We argue that these metrics are more natural and more useful than previously proposed metrics for temporal locality. We use this framework to analyze a diverse set of Web reference traces. We find that this framework can shed light on how and why locality properties vary across different locations in the Web topology. For example, we find that filtering and aggregation have opposing effects on the popularity component of the temporal locality, which helps to explain why multilevel caching can be effective in the Web. Furthermore, we find that all transformations tend to diminish the correlation component of temporal locality, which has implications for the utility of different cache replacement policies at different points in the Web.
Resumo:
Future high speed communications networks will transmit data predominantly over optical fibres. As consumer and enterprise computing will remain the domain of electronics, the electro-optical conversion will get pushed further downstream towards the end user. Consequently, efficient tools are needed for this conversion and due to many potential advantages, including low cost and high output powers, long wavelength Vertical Cavity Surface Emitting Lasers (VCSELs) are a viable option. Drawbacks, such as broader linewidths than competing options, can be mitigated through the use of additional techniques such as Optical Injection Locking (OIL) which can require significant expertise and expensive equipment. This thesis addresses these issues by removing some of the experimental barriers to achieving performance increases via remote OIL. Firstly, numerical simulations of the phase and the photon and carrier numbers of an OIL semiconductor laser allowed the classification of the stable locking phase limits into three distinct groups. The frequency detuning of constant phase values (ø) was considered, in particular ø = 0 where the modulation response parameters were shown to be independent of the linewidth enhancement factor, α. A new method to estimate α and the coupling rate in a single experiment was formulated. Secondly, a novel technique to remotely determine the locked state of a VCSEL based on voltage variations of 2mV−30mV during detuned injection has been developed which can identify oscillatory and locked states. 2D & 3D maps of voltage, optical and electrical spectra illustrate corresponding behaviours. Finally, the use of directly modulated VCSELs as light sources for passive optical networks was investigated by successful transmission of data at 10 Gbit/s over 40km of single mode fibre (SMF) using cost effective electronic dispersion compensation to mitigate errors due to wavelength chirp. A widely tuneable MEMS-VCSEL was established as a good candidate for an externally modulated colourless source after a record error free transmission at 10 Gbit/s over 50km of SMF across a 30nm single mode tuning range. The ability to remotely set the emission wavelength using the novel methods developed in this thesis was demonstrated.