992 resultados para Dynamics, Rigid.
Resumo:
In this article, we analyze the three-component reaction-diffusion system originally developed by Schenk et al. (PRL 78:3781–3784, 1997). The system consists of bistable activator-inhibitor equations with an additional inhibitor that diffuses more rapidly than the standard inhibitor (or recovery variable). It has been used by several authors as a prototype three-component system that generates rich pulse dynamics and interactions, and this richness is the main motivation for the analysis we present. We demonstrate the existence of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions, on the real line, and we determine the parameter regimes in which they exist. Also, for one-pulse solutions, we analyze various bifurcations, including the saddle-node bifurcation in which they are created, as well as the bifurcation from a stationary to a travelling pulse, which we show can be either subcritical or supercritical. For two-pulse solutions, we show that the third component is essential, since the reduced bistable two-component system does not support them. We also analyze the saddle-node bifurcation in which two-pulse solutions are created. The analytical method used to construct all of these pulse solutions is geometric singular perturbation theory, which allows us to show that these solutions lie in the transverse intersections of invariant manifolds in the phase space of the associated six-dimensional travelling wave system. Finally, as we illustrate with numerical simulations, these solutions form the backbone of the rich pulse dynamics this system exhibits, including pulse replication, pulse annihilation, breathing pulses, and pulse scattering, among others.
Resumo:
In this article, we analyze the stability and the associated bifurcations of several types of pulse solutions in a singularly perturbed three-component reaction-diffusion equation that has its origin as a model for gas discharge dynamics. Due to the richness and complexity of the dynamics generated by this model, it has in recent years become a paradigm model for the study of pulse interactions. A mathematical analysis of pulse interactions is based on detailed information on the existence and stability of isolated pulse solutions. The existence of these isolated pulse solutions is established in previous work. Here, the pulse solutions are studied by an Evans function associated to the linearized stability problem. Evans functions for stability problems in singularly perturbed reaction-diffusion models can be decomposed into a fast and a slow component, and their zeroes can be determined explicitly by the NLEP method. In the context of the present model, we have extended the NLEP method so that it can be applied to multi-pulse and multi-front solutions of singularly perturbed reaction-diffusion equations with more than one slow component. The brunt of this article is devoted to the analysis of the stability characteristics and the bifurcations of the pulse solutions. Our methods enable us to obtain explicit, analytical information on the various types of bifurcations, such as saddle-node bifurcations, Hopf bifurcations in which breathing pulse solutions are created, and bifurcations into travelling pulse solutions, which can be both subcritical and supercritical.
Resumo:
Stronger investor interest in commodities may create closer integration with conventional asset markets. We estimate sudden and gradual changes in correlation between stocks, bonds and commodity futures returns driven by observable financial variables and time, using double smooth transition conditional correlation (DSTCC–GARCH) models. Most correlations begin the 1990s near zero but closer integration emerges around the early 2000s and reaches peaks during the recent crisis. Diversification benefits to investors across equity, bond and stock markets were significantly reduced. Increases in VIX and financial traders’ short open interest raise futures returns volatility for many commodities. Higher VIX also increases commodity returns correlation with equity returns for about half the pairs, indicating closer integration.
Resumo:
None of currently used tonometers produce estimated IOP values that are free of errors. Measurement incredibility arises from indirect measurement of corneal deformation and the fact that pressure calculations are based on population averaged parameters of anterior segment. Reliable IOP values are crucial for understanding and monitoring of number of eye pathologies e.g. glaucoma. We have combined high speed swept source OCT with air-puff chamber. System provides direct measurement of deformation of cornea and anterior surface of the lens. This paper describes in details the performance of air-puff ssOCT instrument. We present different approaches of data presentation and analysis. Changes in deformation amplitude appears to be good indicator of IOP changes. However, it seems that in order to provide accurate intraocular pressure values an additional information on corneal biomechanics is necessary. We believe that such information could be extracted from data provided by air-puff ssOCT.
Resumo:
This research examines the entrepreneurship phenomenon, and the question: Why are some venture attempts more successful than others? This question is not a new one. Prior research has answered this by describing those that engage in nascent entrepreneurship. Yet, this approach yielded little consensus and offers little comfort for those newly considering venture creation (Gartner, 1988). Rather, this research considers the process of venture creation, by focusing on the actions of nascent entrepreneurs. However, the venture creation process is complex (Liao, Welsch, & Tan, 2005), and multi-dimensional (Davidsson, 2004). The process can vary in the amount of action engaged by the entrepreneur; the temporal dynamics of how action is enacted (Lichtenstein, Carter, Dooley, and Gartner 2007); or the sequence in which actions are undertaken. And little is known about whether any, or all three, of these dimensions matter. Further, there exists scant general knowledge about how the venture creation process influences venture creation outcomes (Gartner & Shaver, 2011). Therefore, this research conducts a systematic study of what entrepreneurs do as they create a new venture. The primary goal is to develop general principles so that advice may be offered on how to ‘proceed’, rather than how to ‘be’. Three integrated empirical studies were conducted that separately focus on each of the interrelated dimensions. The basis for this was a randomly sampled, longitudinal panel, of nascent ventures. Upon recruitment these ventures were in the process of being created, but yet to be established as new businesses. The ventures were tracked one year latter to follow up on outcomes. Accordingly, this research makes the following original contributions to knowledge. First, the findings suggest that all three of the dimensions play an important role: action, dynamics, and sequence. This implies that future research should take a multi-dimensional view of the venture creation process. Failing to do so can only result in a limited understanding of a complex phenomenon. Second, action is the fundamental means through which venture creation is achieved. Simply put, more active venture creation efforts are more likely more successful. Further, action is the medium which allows resource endowments their effect upon venture outcomes. Third, the dynamics of how venture creation plays out over time is also influential. Here, a process with a high rate of action which increases in intensity will more likely achieve positive outcomes. Forth, sequence analysis, suggests that the order in which actions are taken will also drive outcomes. Although venture creation generally flows in sequence from discovery toward exploitation (Shane & Venkataraman, 2000; Eckhardt & Shane, 2003; Shane, 2003), processes that actually proceed in this way are less likely to be realized. Instead, processes which specifically intertwine discovery and exploitation action together in symbiosis more likely achieve better outcomes (Sarasvathy, 2001; Baker, Miner, & Eesley, 2003). Further, an optimal venture creation order exists somewhere between these sequential and symbiotic process archetypes. A process which starts out as symbiotic discovery and exploitation, but switches to focus exclusively on exploitation later on is most likely to achieve venture creation. These sequence findings are unique, and suggest future integration between opposing theories for order in venture creation.
Resumo:
Internet services are important part of daily activities for most of us. These services come with sophisticated authentication requirements which may not be handled by average Internet users. The management of secure passwords for example creates an extra overhead which is often neglected due to usability reasons. Furthermore, password-based approaches are applicable only for initial logins and do not protect against unlocked workstation attacks. In this paper, we provide a non-intrusive identity verification scheme based on behavior biometrics where keystroke dynamics based-on free-text is used continuously for verifying the identity of a user in real-time. We improved existing keystroke dynamics based verification schemes in four aspects. First, we improve the scalability where we use a constant number of users instead of whole user space to verify the identity of target user. Second, we provide an adaptive user model which enables our solution to take the change of user behavior into consideration in verification decision. Next, we identify a new distance measure which enables us to verify identity of a user with shorter text. Fourth, we decrease the number of false results. Our solution is evaluated on a data set which we have collected from users while they were interacting with their mail-boxes during their daily activities.
Resumo:
Purpose: Photoreceptor interactions reduce the temporal bandwidth of the visual system under mesopic illumination. The dynamics of these interactions are not clear. This study investigated cone-cone and rod-cone interactions when the rod (R) and three cone (L, M, S) photoreceptor classes contribute to vision via shared post-receptoral pathways. Methods: A four-primary photostimulator independently controlled photoreceptor activity in human observers. To determine the temporal dynamics of receptoral (L, S, R) and post-receptoral (LMS, LMSR, +L-M) pathways (5 Td, 7° eccentricity) in Experiment 1, ON-pathway sensitivity was assayed with an incremental probe (25ms) presented relative to onset of an incremental sawtooth conditioning pulse (1000ms). To define the post-receptoral pathways mediating the rod stimulus, Experiment 2 matched the color appearance of increased rod activation (30% contrast, 25-1000ms; constant cone excitation) with cone stimuli (variable L+M, L/L+M, S/L+M; constant rod excitation). Results: Cone-cone interactions with luminance stimuli (LMS, LMSR, L-cone) reduced Weber contrast sensitivity by 13% and the time course of adaptation was 23.7±1ms (μ±SE). With chromatic stimuli (+L-M, S), cone pathway sensitivity was also reduced and recovery was slower (+L-M 8%, 2.9±0.1ms; S 38%, 1.5±0.3ms). Threshold patterns at ON-conditioning pulse onset were monophasic for luminance and biphasic for chromatic stimuli. Rod-rod interactions increased sensitivity(19%) with a recovery time of 0.7±0.2ms. Compared to cone-cone interactions, rod-cone interactions with luminance stimuli reduced sensitivity to a lesser degree (5%) with faster recovery (42.9±0.7ms). Rod-cone interactions were absent with chromatic stimuli. Experiment 2 showed that rod activation generated luminance (L+M) signals at all durations, and chromatic signals (L/L+M, S/L+M) for durations >75ms. Conclusions: Temporal dynamics of cone-cone interactions are consistent with contrast sensitivity loss in the MC pathway for luminance stimuli and chromatically opponent responses in the PC and KC pathway with chromatic stimuli. Rod-cone interactions limit contrast sensitivity loss during dynamic illumination changes and increase the speed of mesopic light adaptation. The change in relative weighting of the temporal rod signal within the major post-receptoral pathways modifies the sensitivity and dynamics of photoreceptor interactions.
Resumo:
Graphene nanoribbon (GNR) with free edges demonstrates unique pre-existing edge energy and edge stress, leading to non-flat morphologies. Using molecular dynamics (MD) methods, we evaluated edge energies as well as edge stresses for four different edge types, including regular edges (armchair and zigzag), armchair edge terminated with hydrogen and reconstructed armchair. The results showed that compressive stress exists in the regular and hydrogen-terminated edges along the edge direction. In contrast, the reconstructed armchair edge is generally subject to tension. Furthermore, we also investigated shape transition between flat and rippled configurations of GNRs with different free edges. It was found that the pre-existing stress at free edges can greatly influence the initial energy state and the shape transition.
Resumo:
This contribution describes two mass movement deposits (total volume ~0.5 km3) identified in seven marine cores located 8 to 15 km offshore southern Montserrat, West Indies. The deposits were emplaced in the last 35 ka and have not previously been recognised in either the subaerial or distal submarine records. Age constraints, provided by radiocarbon dating, show that an explosive volcanic eruption occurred at ca 8–12 ka, emplacing a primary eruption-related deposit that overlies a large (~0.3 km3) reworked bioclastic and volcaniclastic flow deposit, formed from a shelf collapse between 8 and 35 ka. The origin of these deposits has been deduced through the correlation of marine sediment cores, component analysis and geochemical analysis. The 8–12 ka primary volcanic deposit was likely derived from a highly-erosive pyroclastic flow from the Soufrière Hills volcano that entered the ocean and mixed with the water column forming a water-supported density current. Previous investigations of the eruption record suggested that there was a hiatus in activity at the Soufrière Hills volcano between 16 and 6 ka. The ca 8–12 ka eruptive episode identified here shows that this hiatus was shorter than previously hypothesised, and thus highlights the importance of obtaining an accurate and completemarine record of events offshore from volcanic islands and incorporating such data into eruption history reconstructions. Comparisons with the submarine deposit characteristics of the 2003 dome collapse also suggests that the ~8–12 ka eruptive episode was more explosive than eruptions from the current eruptive episode.
Resumo:
This paper provides a commentary on the contribution by Dr Chow who questioned whether the functions of learning are general across all categories of tasks or whether there are some task-particular aspects to the functions of learning in relation to task type. Specifically, they queried whether principles and practice for the acquisition of sport skills are different than what they are for musical, industrial, military and human factors skills. In this commentary we argue that ecological dynamics contains general principles of motor learning that can be instantiated in specific performance contexts to underpin learning design. In this proposal, we highlight the importance of conducting skill acquisition research in sport, rather than relying on empirical outcomes of research from a variety of different performance contexts. Here we discuss how task constraints of different performance contexts (sport, industry, military, music) provide different specific information sources that individuals use to couple their actions when performing and acquiring skills. We conclude by suggesting that his relationship between performance task constraints and learning processes might help explain the traditional emphasis on performance curves and performance outcomes to infer motor learning.
Resumo:
Trajectory basis Non-Rigid Structure From Motion (NRSFM) currently faces two problems: the limit of reconstructability and the need to tune the basis size for different sequences. This paper provides a novel theoretical bound on 3D reconstruction error, arguing that the existing definition of reconstructability is fundamentally flawed in that it fails to consider system condition. This insight motivates a novel strategy whereby the trajectory's response to a set of high-pass filters is minimised. The new approach eliminates the need to tune the basis size and is more efficient for long sequences. Additionally, the truncated DCT basis is shown to have a dual interpretation as a high-pass filter. The success of trajectory filter reconstruction is demonstrated quantitatively on synthetic projections of real motion capture sequences and qualitatively on real image sequences.
Resumo:
Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possi-ble morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of gra-phene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.
Resumo:
The Flightless Cormorant Phalacrocorax harrisi is restricted to c. 400 km of the western coastline of the Galápagos archipelago coinciding with the local occurrence of seasonal upwelling of oceanic currents. Individuals frequently make more than one breeding attempt per year, usually change mates, and when juveniles are raised, females desert them to the further care of their mates who complete the rearing alone. Here we report data from a ten-year historical study of a colony stretching c.2 km along the coast-line and representing c. 12% of the total population of the species. The number of clutches laid and juveniles fledged were linked to the occurrence of cold water in off-shore foraging grounds. Most Flightless Cormorants have attachments to local stretches of coastline several hundred metres long. However, a few birds travelled many kilometres, including between colonies, sometimes over open sea. We show that males invest more in nest-building and feeding of the offspring than their mates, and we relate this to the (presumed) in-bred nature of the colony and to male and female reproductive strategies. Our data validate a published demographic model of the species (Valle 1995).
Resumo:
In this study, the nature of the coupling interactions between copper and uracil as well as its several derivatives has been systematically investigated employing the atoms in molecules (AIM) theory and energy decomposition analyses. The whole interaction process has been investigated through the analyses of the radial distribution functions of the Cu⋯X (X = S and O) contact on the basis of the ab initio molecular dynamics. No direct relationship between the adsorption strengths and inhibition efficiencies of the inhibitors has been observed. Additionally, the possibility of the methyl-substituted dithiouracil species to act as copper corrosion inhibitors has been tested.
Resumo:
Between 50 and 100 million people are infected with dengue viruses each year and more than 100,000 of these die. Dr Choudhury has demonstrated that populations of dengue viruses in individual patients are genetically and functionally very diverse and that this diversity changes significantly at the time of major outbreaks of disease. The results of his studies may inform strategies which will make dengue vaccines far more effective.