871 resultados para Dynamic Model Averaging
Resumo:
The paper aims at analyzing the article by Gerson Lima on the manner by which fiscal deficit should be covered. It presents a more general dynamic model, where the principle of effective demand is explicitly used. By doing that, it is possible to treat as endogenous variables the national income and the government entries, what brings the result that the public debt must not follow an explosive path unless the very restrictive conditions of Lima's paper prevail. It also evaluates Lima's implicit inflation theory, and argues against his approximation to Friedman's framework.
Resumo:
For the past 20 years, researchers have applied the Kalman filter to the modeling and forecasting the term structure of interest rates. Despite its impressive performance in in-sample fitting yield curves, little research has focused on the out-of-sample forecast of yield curves using the Kalman filter. The goal of this thesis is to develop a unified dynamic model based on Diebold and Li (2006) and Nelson and Siegel’s (1987) three-factor model, and estimate this dynamic model using the Kalman filter. We compare both in-sample and out-of-sample performance of our dynamic methods with various other models in the literature. We find that our dynamic model dominates existing models in medium- and long-horizon yield curve predictions. However, the dynamic model should be used with caution when forecasting short maturity yields
Resumo:
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.
Resumo:
Les fichiers video (d'animation) sont dans un format Windows Media (.wmv)
Resumo:
The central hypothesis to be tested is the relevance of gold in the determination of the value of the US dollar as an international reserve currency after 1971. In the first section the market value of the US dollar is analysed by looking at new forms of value (financial derivative products), the dollar as a safe haven, the choice of a standard of value and the role of SDRs in reforming the international monetary system. Based on dimensional analysis, the second section analyses the definition and meaning of a numéraire for international currency and the justification for a variable standard of value based on a commodity (gold). The second section is the theoretical foundation for the empirical and econometric analysis in the third and fourth sections. The third section is devoted to the specification of an econometric model and a graphical analysis of the data. It is clear that an inverse relation exists between the value of the US dollar and the price of gold. The fourth section shows the estimations of the different specifications of the model including linear regression and cointegration analysis. The most important econometric result is that the null hypothesis is rejected in favour of a significant link between the price of gold and the value of the US dollar. There is also a positive relationship between gold price and inflation. An inverse statistically significant relation between gold price and monetary policy is shown by applying a dynamic model of cointegration with lags.
Resumo:
L’intérêt principal de cette recherche porte sur la validation d’une méthode statistique en pharmaco-épidémiologie. Plus précisément, nous allons comparer les résultats d’une étude précédente réalisée avec un devis cas-témoins niché dans la cohorte utilisé pour tenir compte de l’exposition moyenne au traitement : – aux résultats obtenus dans un devis cohorte, en utilisant la variable exposition variant dans le temps, sans faire d’ajustement pour le temps passé depuis l’exposition ; – aux résultats obtenus en utilisant l’exposition cumulative pondérée par le passé récent ; – aux résultats obtenus selon la méthode bayésienne. Les covariables seront estimées par l’approche classique ainsi qu’en utilisant l’approche non paramétrique bayésienne. Pour la deuxième le moyennage bayésien des modèles sera utilisé pour modéliser l’incertitude face au choix des modèles. La technique utilisée dans l’approche bayésienne a été proposée en 1997 mais selon notre connaissance elle n’a pas été utilisée avec une variable dépendante du temps. Afin de modéliser l’effet cumulatif de l’exposition variant dans le temps, dans l’approche classique la fonction assignant les poids selon le passé récent sera estimée en utilisant des splines de régression. Afin de pouvoir comparer les résultats avec une étude précédemment réalisée, une cohorte de personnes ayant un diagnostique d’hypertension sera construite en utilisant les bases des données de la RAMQ et de Med-Echo. Le modèle de Cox incluant deux variables qui varient dans le temps sera utilisé. Les variables qui varient dans le temps considérées dans ce mémoire sont iv la variable dépendante (premier évènement cérébrovasculaire) et une des variables indépendantes, notamment l’exposition
Resumo:
Les fluctuations économiques représentent les mouvements de la croissance économique. Celle-ci peut connaître des phases d'accélération (expansion) ou de ralentissement (récession), voire même de dépression si la baisse de production est persistente. Les fluctuations économiques sont liées aux écarts entre croissance effective et croissance potentielle. Elles peuvent s'expliquer par des chocs d'offre et demande, ainsi que par le cycle du crédit. Dans le premier cas, les conditions de la production se trouvent modifiées. C'est le cas lorsque le prix des facteurs de production (salaires, prix des matières premières) ou que des facteurs externes influençant le prix des produits (taux de change) évolue. Ainsi, une hausse du prix des facteurs de production provoque un choc négatif et ralentit la croissance. Ce ralentissement peut être également dû à un choc de demande négatif provoqué par une hausse du prix des produits causée par une appréciation de la devise, engendrant une diminution des exportations. Le deuxième cas concerne les variables financières et les actifs financiers. Ainsi, en période d'expansion, les agents économiques s'endettent et ont des comportements spéculatifs en réaction à des chocs d'offre ou demande anticipés. La valeur des titres et actifs financiers augmente, provoquant une bulle qui finit par éclater et provoquer un effondrement de la valeur des biens. Dès lors, l'activité économique ne peut plus être financée. C'est ce qui génère une récession, parfois profonde, comme lors de la récente crise financière. Cette thèse inclut trois essais sur les fluctuations macroéconomiques et les cycles économiques, plus précisément sur les thèmes décrit ci-dessus. Le premier chapitre s'intéresse aux anticipations sur la politique monétaire et sur la réaction des agents écononomiques face à ces anticipations. Une emphase particulière est mise sur la consommation de biens durables et l'endettement relié à ce type de consommation. Le deuxième chapitre aborde la question de l'influence des variations du taux de change sur la demande de travail dans le secteur manufacturier canadien. Finalement, le troisième chapitre s'intéresse aux retombées économiques, parfois négatives, du marché immobilier sur la consommation des ménages et aux répercussions sur le prix des actifs immobiliers et sur l'endettement des ménages d'anticipations infondées sur la demande dans le marché immobilier. Le premier chapitre, intitulé ``Monetary Policy News Shocks and Durable Consumption'', fournit une étude sur le lien entre les dépenses en biens durables et les chocs monétaires anticipés. Nous proposons et mettons en oeuvre une nouvelle approche pour identifier les chocs anticipés (nouvelles) de politique monétaire, en les identifiant de manière récursive à partir des résidus d’une règle de Taylor estimée à l’aide de données de sondage multi-horizon. Nous utilisons ensuite les chocs anticipés inférer dans un modèle autorégressif vectoriel structurel (ARVS). L’anticipation d’une politique de resserrement monétaire mène à une augmentation de la production, de la consommation de biens non-durables et durables, ainsi qu’à une augmentation du prix réel des biens durables. Bien que les chocs anticipés expliquent une part significative des variations de la production et de la consommation, leur impact est moindre que celui des chocs non-anticipés sur les fluctuations économiques. Finalement, nous menons une analyse théorique avec un modèle d’équilibre général dynamique stochastique (EGDS) avec biens durables et rigidités nominales. Les résultats indiquent que le modèle avec les prix des biens durables rigides peut reproduire la corrélation positive entre les fonctions de réponse de la consommation de biens non-durables et durables à un choc anticipé de politique monétaire trouvées à l’aide du ARVS. Le second chapitre s'intitule ``Exchange Rate Fluctuations and Labour Market Adjustments in Canadian Manufacturing Industries''. Dans ce chapitre, nous évaluons la sensibilité de l'emploi et des heures travaillées dans les industries manufacturières canadiennes aux variations du taux de change. L’analyse est basée sur un modèle dynamique de demande de travail et utilise l’approche en deux étapes pour l'estimation des relations de cointégration en données de panel. Nos données sont prises d’un panel de 20 industries manufacturières, provenant de la base de données KLEMS de Statistique Canada, et couvrent une longue période qui inclut deux cycles complets d’appréciation-dépréciation de la valeur du dollar canadien. Les effets nets de l'appréciation du dollar canadien se sont avérés statistiquement et économiquement significatifs et négatifs pour l'emploi et les heures travaillées, et ses effets sont plus prononcés dans les industries davantage exposées au commerce international. Finalement, le dernier chapitre s'intitule ``Housing Market Dynamics and Macroprudential Policy'', dans lequel nous étudions la relation statistique suggérant un lien collatéral entre le marché immobilier and le reste de l'économique et si ce lien est davantage entraîné par des facteurs de demandes ou d'offres. Nous suivons également la littérature sur les chocs anticipés et examinons un cyle d'expansion-récession peut survenir de façon endogène la suite d'anticipations non-réalisées d'une hausse de la demande de logements. À cette fin, nous construisons un modèle néo-Keynésien au sein duquel le pouvoir d’emprunt du partie des consommateurs est limité par la valeur de leur patrimoine immobilier. Nous estimons le modèle en utilisant une méthode Bayésienne avec des données canadiennes. Nous évaluons la capacité du modèle à capter les caractéristiques principales de la consommation et du prix des maisons. Finalement, nous effectuons une analyse pour déterminer dans quelle mesure l'introduction d'un ratio prêt-à-la-valeur contracyclique peut réduire l'endettement des ménages et les fluctuations du prix des maisons comparativement à une règle de politique monétaire répondant à l'inflation du prix des maisons. Nous trouvons une relation statistique suggérant un important lien collatéral entre le marché immobilier et le reste de l'économie, et ce lien s'explique principalement par des facteurs de demande. Nous constatons également que l'introduction de chocs anticipés peut générer un cycle d'expansion-récession du marché immobilier, la récession faisant suite aux attentes non-réalisées par rapport à la demande de logements. Enfin, notre étude suggère également qu'un ratio contracyclique de prêt-à-la-valeur est une politique utile pour réduire les retombées du marché du logement sur la consommation par l'intermédiaire de la valeur garantie.
Resumo:
Cette thèse comporte trois essais en économie des ressources naturelles. Le Chapitre 2 analyse les effets du stockage d’une ressource naturelle sur le bien-être et sur le stock de celle-ci, dans le contexte de la rizipisciculture. La rizipisciculture consiste à élever des poissons dans une rizière en même temps que la culture du riz. Je développe un modèle d’équilibre général, qui contient trois composantes principales : une ressource renouvelable à accès libre, deux secteurs de production et le stockage du bien produit à partir de la ressource. Les consommateurs stockent la ressource lorsqu’ils spéculent que le prix de cette ressource sera plus élevé dans le futur. Le stockage a un effet ambigu sur le bien-être, négatif sur le stock de ressource au moment où le stockage a lieu et positive sur le stock de ressource dans le futur. Le Chapitre 3 étudie les effects de la migration de travailleurs qualifiés dans un modèle de commerce international lorsqu’il y a présence de pollution. Je développe un modèle de commerce à deux secteurs dans lequel j’introduis les questions de pollution et de migration dans l’objectif de montrer que le commerce interrégional peut affecter le niveau de pollution dans un pays composé de régions qui ont des structures industrielles différentes. La mobilité des travailleurs amplifie les effets du commerce sur le capital environnemental. Le capital environnemental de la région qui a la technologie la moins (plus) polluante est positivement (négativement) affecté par le commerce. De plus, je montre que le commerce interrégional est toujours bénéfique pour la région avec la technologie la moins polluante, ce qui n’est pas toujours le cas pour la région qui a la technologie la plus polluante. Finalement, le Chapitre 4 est coécrit avec Yves Richelle. Dans ce chapitre, nous étudions l’allocation efficace de l’eau d’un lac entre différents utilisateurs. Nous considérons dans le modèle deux types d’irréversibilités : l’irréversibilité d’un investissement qui crée un dommage à l’écosystème et l’irréversibilité dans l’allocation des droits d’usage de l’eau qui provient de la loi sur l’eau (irréversibilité légale). Nous déterminons d’abord la valeur de l’eau pour chacun des utilisateurs. Par la suite, nous caractérisons l’allocation optimale de l’eau entre les utilisateurs. Nous montrons que l’irréversibilité légale entraîne qu’il est parfois optimal de réduire la quantité d’eau allouée à la firme, même s’il n’y a pas de rivalité d’usage. De plus, nous montrons qu’il n’est pas toujours optimal de prévenir le dommage créé par un investissement. Dans l’ensemble, nous prouvons que les irréversibilités entraînent que l’égalité de la valeur entre les utilisateurs ne tient plus à l’allocation optimale. Nous montrons que lorsqu’il n’y a pas de rivalité d’usage, l’eau non utilisée ne doit pas être considérée comme une ressource sans limite qui doit être utilisée de n’importe quelle façon.
Inference for nonparametric high-frequency estimators with an application to time variation in betas
Resumo:
We consider the problem of conducting inference on nonparametric high-frequency estimators without knowing their asymptotic variances. We prove that a multivariate subsampling method achieves this goal under general conditions that were not previously available in the literature. We suggest a procedure for a data-driven choice of the bandwidth parameters. Our simulation study indicates that the subsampling method is much more robust than the plug-in method based on the asymptotic expression for the variance. Importantly, the subsampling method reliably estimates the variability of the Two Scale estimator even when its parameters are chosen to minimize the finite sample Mean Squared Error; in contrast, the plugin estimator substantially underestimates the sampling uncertainty. By construction, the subsampling method delivers estimates of the variance-covariance matrices that are always positive semi-definite. We use the subsampling method to study the dynamics of financial betas of six stocks on the NYSE. We document significant variation in betas within year 2006, and find that tick data captures more variation in betas than the data sampled at moderate frequencies such as every five or twenty minutes. To capture this variation we estimate a simple dynamic model for betas. The variance estimation is also important for the correction of the errors-in-variables bias in such models. We find that the bias corrections are substantial, and that betas are more persistent than the naive estimators would lead one to believe.
Resumo:
Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries
Resumo:
Im Rahmen dieser Arbeit werden Modellbildungsverfahren zur echtzeitfähigen Simulation wichtiger Schadstoffkomponenten im Abgasstrom von Verbrennungsmotoren vorgestellt. Es wird ein ganzheitlicher Entwicklungsablauf dargestellt, dessen einzelne Schritte, beginnend bei der Ver-suchsplanung über die Erstellung einer geeigneten Modellstruktur bis hin zur Modellvalidierung, detailliert beschrieben werden. Diese Methoden werden zur Nachbildung der dynamischen Emissi-onsverläufe relevanter Schadstoffe des Ottomotors angewendet. Die abgeleiteten Emissionsmodelle dienen zusammen mit einer Gesamtmotorsimulation zur Optimierung von Betriebstrategien in Hybridfahrzeugen. Im ersten Abschnitt der Arbeit wird eine systematische Vorgehensweise zur Planung und Erstellung von komplexen, dynamischen und echtzeitfähigen Modellstrukturen aufgezeigt. Es beginnt mit einer physikalisch motivierten Strukturierung, die eine geeignete Unterteilung eines Prozessmodells in einzelne überschaubare Elemente vorsieht. Diese Teilmodelle werden dann, jeweils ausgehend von einem möglichst einfachen nominalen Modellkern, schrittweise erweitert und ermöglichen zum Abschluss eine robuste Nachbildung auch komplexen, dynamischen Verhaltens bei hinreichender Genauigkeit. Da einige Teilmodelle als neuronale Netze realisiert werden, wurde eigens ein Verfah-ren zur sogenannten diskreten evidenten Interpolation (DEI) entwickelt, das beim Training einge-setzt, und bei minimaler Messdatenanzahl ein plausibles, also evidentes Verhalten experimenteller Modelle sicherstellen kann. Zum Abgleich der einzelnen Teilmodelle wurden statistische Versuchs-pläne erstellt, die sowohl mit klassischen DoE-Methoden als auch mittels einer iterativen Versuchs-planung (iDoE ) generiert wurden. Im zweiten Teil der Arbeit werden, nach Ermittlung der wichtigsten Einflussparameter, die Model-strukturen zur Nachbildung dynamischer Emissionsverläufe ausgewählter Abgaskomponenten vor-gestellt, wie unverbrannte Kohlenwasserstoffe (HC), Stickstoffmonoxid (NO) sowie Kohlenmono-xid (CO). Die vorgestellten Simulationsmodelle bilden die Schadstoffkonzentrationen eines Ver-brennungsmotors im Kaltstart sowie in der anschließenden Warmlaufphase in Echtzeit nach. Im Vergleich zur obligatorischen Nachbildung des stationären Verhaltens wird hier auch das dynami-sche Verhalten des Verbrennungsmotors in transienten Betriebsphasen ausreichend korrekt darge-stellt. Eine konsequente Anwendung der im ersten Teil der Arbeit vorgestellten Methodik erlaubt, trotz einer Vielzahl von Prozesseinflussgrößen, auch hier eine hohe Simulationsqualität und Ro-bustheit. Die Modelle der Schadstoffemissionen, eingebettet in das dynamische Gesamtmodell eines Ver-brennungsmotors, werden zur Ableitung einer optimalen Betriebsstrategie im Hybridfahrzeug ein-gesetzt. Zur Lösung solcher Optimierungsaufgaben bieten sich modellbasierte Verfahren in beson-derer Weise an, wobei insbesondere unter Verwendung dynamischer als auch kaltstartfähiger Mo-delle und der damit verbundenen Realitätsnähe eine hohe Ausgabequalität erreicht werden kann.
Resumo:
Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system
Resumo:
This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model
Resumo:
I test the presence of hidden information and action in the automobile insurance market using a data set from several Colombian insurers. To identify the presence of hidden information I find a common knowledge variable providing information on policyholder s risk type which is related to both experienced risk and insurance demand and that was excluded from the pricing mechanism. Such unused variable is the record of policyholder s traffic offenses. I find evidence of adverse selection in six of the nine insurance companies for which the test is performed. From the point of view of hidden action I develop a dynamic model of effort in accident prevention given an insurance contract with bonus experience rating scheme and I show that individual accident probability decreases with previous accidents. This result brings a testable implication for the empirical identification of hidden action and based on that result I estimate an econometric model of the time spans between the purchase of the insurance and the first claim, between the first claim and the second one, and so on. I find strong evidence on the existence of unobserved heterogeneity that deceives the testable implication. Once the unobserved heterogeneity is controlled, I find conclusive statistical grounds supporting the presence of moral hazard in the Colombian insurance market.