914 resultados para Drought relief


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epigenetic modification of the genome via cytosine methylation is a dynamic process that responds to changes in the growing environment. This modification can also be heritable. The combination of both properties means that there is the potential for the life experiences of the parental generation to modify the methylation profiles of their offspring and so potentially to ‘pre-condition’ them to better accommodate abiotic conditions encountered by their parents. We recently identified high vapor pressure deficit (vpd)-induced DNA methylation at two gene loci in the stomatal development pathway and an associated reduction in leaf stomatal frequency.1 Here, we test whether this epigenetic modification pre-conditioned parents and their offspring to the more severe water stress of periodic drought. We found that three generations of high vpd-grown plants were better able to withstand periodic drought stress over two generations. This resistance was not directly associated with de novo methylation of the target stomata genes, but was associated with the cmt3 mutant’s inability to maintain asymmetric sequence context methylation. If our finding applies widely, it could have significant implications for evolutionary biology and breeding for stressful environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshwater deficits and heavy rainfall have been projected to intensify in a warming climate. An analysis of hydrological data suggests that past changes in wet and dry extremes were more complex than a simple amplification of existing patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many species have the ability to resprout vegetatively after a substantial loss of biomass induced by environmental stress, including drought. Many of the regions characterised by ecosystems where resprouting is common are projected to experience more frequent and intense drought during the 21st Century. However, in assessments of ecosystem response to drought disturbance there has been scant consideration of the resilience and post-drought recovery of resprouting species. Systematic differences in hydraulic and allocation traits suggest that resprouting species are more resilient to drought-stress than nonresprouting species. Evidence suggests that ecosystems dominated by resprouters recover from disturbance more quickly than ecosystems dominated by nonresprouters. The ability of resprouters to avoid mortality and withstand drought, coupled with their ability to recover rapidly, suggests that the impact of increased drought stress in ecosystems dominated by these species may be small. The strategy of resprouting needs to be modelled explicitly to improve estimates of future climate-change impacts on the carbon cycle, but this will require several important knowledge gaps to be filled before resprouting can be properly implemented.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Potatoes are a globally important source of food whose production requires large inputs of fertiliser and water. Recent research has highlighted the importance of the root system in acquiring resources. Here measurements, previously generated by field phenotyping, tested the effect of root size on maintenance of yield under drought (drought tolerance). Methods Twelve potato genotypes, including genotypes with extremes of root size, were grown to maturity in the field under a rain shelter and either irrigated or subjected to drought. Soil moisture, canopy growth, carbon isotope discrimination and final yields were measured. Destructively harvested field phenotype data were used as explanatory variables in a general linear model (GLM) to investigate yield under conditions of drought or irrigation. Results Drought severely affected the small rooted genotype Pentland Dell but not the large rooted genotype Cara. More plantlets, longer and more numerous stolons and stolon roots were associated with drought tolerance. Previously measured carbon isotope discrimination did not correlate with the effect of drought. Conclusions These data suggest that in-field phenotyping can be used to identify useful characteristics when known genotypes are subjected to an environmental stress. Stolon root traits were associated with drought tolerance in potato and could be used to select genotypes with resilience to drought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims Medicago sativa L. is widely grown in southern Australia, but is poorly adapted to dry, hot summers. This study aimed to identify perennial herbaceous legumes with greater resistance to drought stress and explore their adaptive strategies. Methods Ten herbaceous perennial legume species/accessions were grown in deep pots in a sandy, low-phosphorus field soil in a glasshouse. Drought stress was imposed by ceasing to water. A companion M. sativa plant in each pot minimised differences in leaf area and water consumption among species. Plants were harvested when stomatal conductance of stressed plants decreased to around 10% of well watered plants. Results A range of responses to drought stress were identified, including: reduced shoot growth; leaf curling; thicker pubescence on leaves and stems; an increased root:shoot ratio; an increase, decrease or no change in root distribution with depth; reductions in specific leaf area or leaf water potential; and osmotic adjustment. The suite of changes differed substantially among species and, less so, among accessions. Conclusions The inter- and intra-specific variability of responses to drought-stress in the plants examined suggests a wide range of strategies are available in perennial legumes to cope with drying conditions, and these could be harnessed in breeding/selection programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is expected to increase the frequency of some climatic extremes. These may have drastic impacts on biodiversity, particularly if meteorological thresholds are crossed, leading to population collapses. Should this occur repeatedly, populations may be unable to recover, resulting in local extinctions. Comprehensive time series data on butterflies in Great Britain provide a rare opportunity to quantify population responses to both past severe drought and the interaction with habitat area and fragmentation. Here, we combine this knowledge with future projections from multiple climate models, for different Representative Concentration Pathways (RCPs), and for simultaneous modelled responses to different landscape characteristics. Under RCP8.5, which is associated with ‘business as usual’ emissions, widespread drought-sensitive butterfly population extinctions could occur as early as 2050. However, by managing landscapes and particularly reducing habitat fragmentation, the probability of persistence until mid-century improves from around zero to between 6 and 42% (95% confidence interval). Achieving persistence with a greater than 50% chance and right through to 2100 is possible only under both low climate change (RCP2.6) and semi-natural habitat restoration. Our data show that, for these drought-sensitive butterflies, persistence is achieved more effectively by restoring semi-natural landscapes to reduce fragmentation, rather than simply focusing on increasing habitat area, but this will only be successful in combination with substantial emission reductions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Middle East and Southwest Asia comprise a region that is water-stressed, societally vulnerable, and prone to severe droughts. Large-scale climate variability, particularly La Niña, appears to play an important role in region-wide drought, including the two most severe of the last fifty years—1999-2001 and 2007-2008—with implications for drought forecasting. Important dynamical factors include orography, thermodynamic influence on vertical motion, storm track changes, and moisture transport. Vegetation in the region is strongly impacted by drought and may provide an important feedback mechanism. In future projections, drying of the eastern Mediterranean is a robust feature, as are temperature increases throughout the region, which will affect evaporation and the timing and intensity of snowmelt. Vegetation feedbacks may become more important in a warming climate. There are a wide range of outstanding issues for understanding, monitoring, and predicting drought in the region, including: dynamics of the regional storm track, the relative importance of the range of dynamical mechanisms related to drought, regional coherence of drought, the relationship between synoptic-scale mechanisms and drought, predictability of vegetation and crop yields, stability of remote influences, data uncertainty, and the role of temperature. Development of a regional framework for cooperative work and dissemination of information and existing forecasts would speed understanding and make better use of available information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This section of the report summarises the effect of different levels of climate change on risk of drought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remotely sensed rainfall is increasingly being used to manage climate-related risk in gauge sparse regions. Applications based on such data must make maximal use of the skill of the methodology in order to avoid doing harm by providing misleading information. This is especially challenging in regions, such as Africa, which lack gauge data for validation. In this study, we show how calibrated ensembles of equally likely rainfall can be used to infer uncertainty in remotely sensed rainfall estimates, and subsequently in assessment of drought. We illustrate the methodology through a case study of weather index insurance (WII) in Zambia. Unlike traditional insurance, which compensates proven agricultural losses, WII pays out in the event that a weather index is breached. As remotely sensed rainfall is used to extend WII schemes to large numbers of farmers, it is crucial to ensure that the indices being insured are skillful representations of local environmental conditions. In our study we drive a land surface model with rainfall ensembles, in order to demonstrate how aggregation of rainfall estimates in space and time results in a clearer link with soil moisture, and hence a truer representation of agricultural drought. Although our study focuses on agricultural insurance, the methodological principles for application design are widely applicable in Africa and elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Amazon Basin is crucial to global circulatory and carbon patterns due to the large areal extent and large flux magnitude. Biogeophysical models have had difficulty reproducing the annual cycle of net ecosystem exchange (NEE) of carbon in some regions of the Amazon, generally simulating uptake during the wet season and efflux during seasonal drought. In reality, the opposite occurs. Observational and modeling studies have identified several mechanisms that explain the observed annual cycle, including: (1) deep soil columns that can store large water amount, (2) the ability of deep roots to access moisture at depth when near-surface soil dries during annual drought, (3) movement of water in the soil via hydraulic redistribution, allowing for more efficient uptake of water during the wet season, and moistening of near-surface soil during the annual drought, and (4) photosynthetic response to elevated light levels as cloudiness decreases during the dry season. We incorporate these mechanisms into the third version of the Simple Biosphere model (SiB3) both singly and collectively, and confront the results with observations. For the forest to maintain function through seasonal drought, there must be sufficient water storage in the soil to sustain transpiration through the dry season in addition to the ability of the roots to access the stored water. We find that individually, none of these mechanisms by themselves produces a simulation of the annual cycle of NEE that matches the observed. When these mechanisms are combined into the model, NEE follows the general trend of the observations, showing efflux during the wet season and uptake during seasonal drought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roads facilitate access by deforestation agents, being relevant in studies approaching conservationist matters in rainforests. It is important to understand the relationship between road distribution, relief, land use, and forest coverage in order to evaluate where forests are more vulnerable. This study aimed at: 1) understanding the relationship between relief and density and road connectivity in three moments in time; and 2) evaluating the relationship between distance from roads and forest coverage, farmlands and rural and urban facilities in a fragmented Atlantic Forest landscape in three moments in time. Maps of roads, altitude, and land use and coverage were used. Chi-square tests showed that: 1) density and road connectivity did not present significant relationship with the relief; and 2) forest areas occupy areas distant from the roads, while farmlands and rural and urban facilities occupy areas nearer the roads. Roads and land use, regardless of relief, influence forest coverage distribution. Thus, we suggest that roads are taken into account in conservationist strategies and environmental planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Relief influence on tree species richness in secondary forest fragments of Atlantic Forest, SE, Brazil). The aim of this work was to explore the relationship between tree species richness and morphological characteristics of relief at the Ibiuna Plateau (SE Brazil). We sampled 61 plots of 0.30 ha, systematically established in 20 fragments of secondary forest (2-274 ha) and in three areas within a continuous secondary forest site, Morro Grande Reserve (9,400 ha). At each plot, 100 trees with diameter at breast height > 5 cm were sampled by the point centered quarter method, and total richness and richness per dispersal and succession class were obtained. The relief was characterized by the mean and variance of slope, elevation, aspect and slope location. There was no significant relationship between relief heterogeneity and tree species richness. Relief parameters generally did not affect tree richness, but elevation was particularly important especially in the continuous forest. Despite the limited range of altitudinal variation (150 m), species richness increases with elevation. The highest areas were also those with the largest forest cover and the lowest disturbance degree, which should contribute to the greater richness of those sites. Our results suggest an indirect influence of relief, due to the fact that deforestation is less intense in higher regions, rather than a direct influence of abiotic factors related to the altitudinal gradient.