921 resultados para Docker,ARM,Raspberry PI,single board computer,QEMU,Sabayon Linux,Gentoo Linux
Resumo:
The new paradigm of connectedness and empowerment brought by the interactivity feature of the Web 2.0 has been challenging the traditional centralized performance of mainstream media. The corporation has been able to survive the strong winds by transforming itself into a global multimedia business network embedded in the network society. By establishing networks, e.g. networks of production and distribution, the global multimedia business network has been able to sight potential solutions by opening the doors to innovation in a decentralized and flexible manner. Under this emerging context of re-organization, traditional practices like sourcing need to be re- explained and that is precisely what this thesis attempts to tackle. Based on ICT and on the network society, the study seeks to explain within the Finnish context the particular case of Helsingin Sanomat (HS) and its relations with the youth news agency, Youth Voice Editorial Board (NÄT). In that sense, the study can be regarded as an explanatory embedded single case study, where HS is the principal unit of analysis and NÄT its embedded unit of analysis. The thesis was able to reach explanations through interrelated steps. First, it determined the role of ICT in HS’s sourcing practices. Then it mapped an overview of the HS’s sourcing relations and provided a context in which NÄT was located. And finally, it established conceptualized institutional relational data between HS and NÄT for their posterior measurement through social network analysis. The data set was collected via qualitative interviews addressed to online and offline editors of HS as well as interviews addressed to NÄT’s personnel. The study concluded that ICT’s interactivity and User Generated Content (UGC) are not sourcing tools as such but mechanism used by HS for getting ideas that could turn into potential news stories. However, when it comes to visual communication, some exemptions were found. The lack of official sources amidst the immediacy leads HS to rely on ICT’s interaction and UGC. More than meets the eye, ICT’s input into the sourcing practice may be more noticeable if the interaction and UGC is well organized and coordinated into proper and innovative networks of alternative content collaboration. Currently, HS performs this sourcing practice via two projects that differ, precisely, by the mode they are coordinated. The first project found, Omakaupunki, is coordinated internally by Sanoma Group’s owned media houses HS, Vartti and Metro. The second project found is coordinated externally. The external alternative sourcing network, as it was labeled, consists of three actors, namely HS, NÄT (professionals in charge) and the youth. This network is a balanced and complete triad in which the actors connect themselves in relations of feedback, recognition, creativity and filtering. However, as innovation is approached very reluctantly, this content collaboration is a laboratory of experiments; a ‘COLLABORATORY’.
Resumo:
For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.
Resumo:
Grid connected PWM-VSIs are being increasingly used for applications such as Distributed Generation (DG), power quality, UPS etc. Appropriate control strategies for grid synchronisation and line current regulation are required to establish such a grid interconnection and power transfer. Control of three phase VSIs is widely reported in iterature. Conventionally, dq control in Synchronous Reference Frame(SRF) is employed for both PLL and line current control where PI-controllers are used to track the DC references. Single phase systems do not have defined direct (d) and quadrature (q) axis components that are required for SRF transformation. Thus, references are AC in nature and hence usage of PI controllers cannot yield zero steady state errors. Resonant controllers have the ability to track AC references accurately. In this work, a resonant controller based single phase PLL and current control technique are being employed for tracking grid frequency and the AC current reference respectively. A single phase full bridge converter is being operated as a STATCOM for performance evaluation of the control scheme.
Resumo:
A linear state feedback gain vector used in the control of a single input dynamical system may be constrained because of the way feedback is realized. Some examples of feedback realizations which impose constraints on the gain vector are: static output feedback, constant gain feedback for several operating points of a system, and two-controller feedback. We consider a general class of problems of stabilization of single input dynamical systems with such structural constraints and give a numerical method to solve them. Each of these problems is cast into a problem of solving a system of equalities and inequalities. In this formulation, the coefficients of the quadratic and linear factors of the closed-loop characteristic polynomial are the variables. To solve the system of equalities and inequalities, a continuous realization of the gradient projection method and a barrier method are used under the homotopy framework. Our method is illustrated with an example for each class of control structure constraint.
Resumo:
Several recent theoretical and computer simulation studies have considered solvation dynamics in a Brownian dipolar lattice which provides a simple model solvent for which detailed calculations can be carried out. In this article a fully microscopic calculation of the solvation dynamics of an ion in a Brownian dipolar lattice is presented. The calculation is based on the non‐Markovian molecular hydrodynamic theory developed recently. The main assumption of the present calculation is that the two‐particle orientational correlation functions of the solid can be replaced by those of the liquid state. It is shown that such a calculation provides an excellent agreement with the computer simulation results. More importantly, the present calculations clearly demonstrate that the frequency‐dependent dielectric friction plays an important role in the long time decay of the solvation time correlation function. We also find that the present calculation provides somewhat better agreement than either the dynamic mean spherical approximation (DMSA) or the Fried–Mukamel theory which use the simulated frequency‐dependent dielectric function. It is found that the dissipative kernels used in the molecular hydrodynamic approach and in the Fried–Mukamel theory are vastly different, especially at short times. However, in spite of this disagreement, the two theories still lead to comparable results in good agreement with computer simulation, which suggests that even a semiquantitatively accurate dissipative kernel may be sufficient to obtain a reliable solvation time correlation function. A new wave vector and frequency‐dependent dissipative kernel (or memory function) is proposed which correctly goes over to the appropriate expressions in both the single particle and the collective limits. This form is expected to lead to better results than all the existing descriptions.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants as well as well-known carcinogens. Therefore, it is important to develop an effective receptor for the detection and quantification of such molecules in solution. In view of this, a 1,3-dinaphthalimide derivative of calix4]arene (L) has been synthesized and characterized, and the structure has been established by single crystal XRD. In the crystal lattice, intermolecular arm-to-arm pi center dot center dot center dot pi overlap dominates and thus L becomes a promising receptor for providing interactions with the aromatic species in solution, which can be monitored by following the changes that occur in its fluorescence and absorption spectra. On the basis of the solution studies carried out with about 17 derivatives of the aromatic guest molecular systems, it may be concluded that the changes that occur in the fluorescence intensity seem to be proportional to the number of aromatic rings present and thus proportional to the extent of pi center dot center dot center dot pi interaction present between the naphthalimide moieties and the aromatic portion of the guest molecule. Though the nonaromatic portion of the guest species affects the fluorescence quenching, the trend is still based on the number of rings present in these. Four guest aldehydes are bound to L with K-ass of 2000-6000 M-1 and their minimum detection limit is in the range of 8-35 mu M. The crystal structure of a naphthaldehyde complex, L.2b, exhibits intermolecular arm-to-arm as well as arm-to-naphthaldehyde pi center dot center dot center dot pi interactions. Molecular dynamics studies of L carried out in the presence of aromatic aldehydes under vacuum as well as in acetonitrile resulted in exhibiting interactions observed in the solid state and hence the changes observed in the fluorescence and absorption spectra are attributable for such interactions. Complex formation has also been delineated through ESI MS studies. Thus L is a promising receptor that can recognize PAHs by providing spectral changes proportional to the aromatic conjugation of the guest and the extent of aromatic pi center dot center dot center dot pi interactions present between L and the guest.
Resumo:
Coordination-driven self-assembly of oxalato-bridged half-sandwich p-cymene ruthenium complex Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)] (O3SCF3)(2) (1a) with several ditopic donors (L-a-L-d) in methanol affords a series of bi- and tetranuclear metallamacrocycles (2a and 3-5). Similarly, the combination of 2,5-dihydroxy-1,4-benzoquinonato (dhbq)-bridged binuclear complex Ru-2(mu-eta(4)-C6H2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) with a flexible bidentate amide linker (L-a) in 1:1 molar ratio gave the corresponding tetranuclear complex 2b. All the macrocycles were isolated as their triflate salts in high yields and were fully characterized by various spectroscopic techniques. Finally, the molecular structures of all the assemblies were determined unambiguously by single-crystal X-diffraction analysis. Interestingly, the combination of acceptor 1a or 1b with an unsymmetrical linear ditopic donor L-a results in a self-sorted linkage isomeric (head-to-tail) macrocycle (2a or 2b) despite the possibility of formation of two different isomeric macrocycles (head-to-head or head-to-tail) due to different connectivity of the donor. Molecular structures of the complexes 2a and 2b showed tetranuclear rectangular geometry with dimensions of 5.51 angstrom x 13.29 angstrom for 2a and 7.91 angstrom x 13.46 angstrom for 2b. In both cases, two binuclear Ru-2(II) building blocks are connected by a mu-N-(4-pyridyl)isonicotinamide donor in a head-to-tail fashion. Surprisingly, the macrocycle 2a loses one counteranion and cocrystallizes with monodeprotonated 1,3,5-trihydroxybenzene via strong intermolecular pi-pi stacking and hydrogen bonding. The tweezer complex 3 showed strong fluorescence in solution, and it showed fluorescence sensing toward nitroaromatic compounds. A fluorescence study demonstrated a marked quenching of the initial fluorescence intensity of the macrocycle 3 upon gradual addition of trinitrotoluene and exhibits significant fluorescence quenching response only for nitroaromatic compounds compared to various other aromatic compounds tested.
Resumo:
Theoretical and computer simulation studies of orientational relaxation in dense molecular liquids are presented. The emphasis of the study is to understand the effects of collective orientational relaxation on the single-particle orientational dynamics. The theoretical analysis is based on a recently developed molecular hydrodynamic theory which allows a self-consistent description of both the collective and the single-particle orientational relaxation. The molecular hydrodynamic theory can be used to derive a relation between the memory function for the collective orientational correlation function and the frequency-dependent dielectric function. A novel feature of the present work is the demonstration that this collective memory function is significantly different from the single-particle rotational friction. However, a microscopic expression for the single-particle rotational friction can be derived from the molecular hydrodynamic theory where the collective memory function can be used to obtain the single-particle orientational friction. This procedure allows, us to calculate the single-particle orientational correlation function near the alpha-beta transition in the supercooled liquid. The calculated correlation function shows an interesting bimodal decay below the bifurcation temperature as the glass transition is approached from above. Brownian dynamics simulations have been carried out to check the validity of the above procedure of translating the memory function from the dielectric relaxation data. We have also investigated the following two issues important in understanding the orientational relaxation in slow liquids. First, we present an analysis of the ''orientational caging'' of translational motion. The value of the translational friction is found to be altered significantly by the orientational caging. Second, we address the question of the rank dependence of the dielectric friction using both simulation and the molecular hydrodynamic theory.
Resumo:
Fluorene and its derivatives are well-known organic semiconducting materials in the field of opto-electronic devices because of their charge transport properties. Three new organic semiconducting materials, namely, 2,2'-((9,9-butyl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C4; 2,2'-((octyl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C8; and 2,2'-((9,9-dodecayl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C12 with a benzothiazole-fluorene backbone, were synthesized and characterized for their photophysical properties. A phenomenon of concomitant polymorphism has been investigated in the first two derivatives (C4 and C8) and has been analyzed systematically in terms of the packing characteristics involving pi ... pi interactions. The conformational flexibility of the pi-conjugated 2,2'-(fluorene-2,7-diyl)bis(4,1 phenylene)bisbenzod]thiazole backbone coupled with orientational freedom of the terminal alkyl chains were found to be the key factors responsible for these polymorphic modifications. Attempts to grow suitable crystals for single crystal X-ray diffraction of compound C12 were unsuccessful.
Resumo:
Single-wall carbon nanotubes (SWNTs) are fascinating systems exhibiting many novel physical properties. In this paper, we give a brief review of the structural, electronic, vibrational, and mechanical properties of carbon nanotubes. In situ resonance Raman scattering of SWNTs investigated under electrochemical biasing demonstrates that the intensity of the radial breathing mode varies significantly in a nonmonotonic manner as a function of the cathodic bias voltage, but does not change appreciably under anodic bias. These results can be quantitatively understood in terms of the changes in the energy gaps between the 1 D van Hove singularities in the electron density of states, arising possibly due to the alterations in the overlap integral of pi bonds between the p-orbitals of the adjacent carbon atoms. In the second part of this paper, we review our high-pressure X-ray diffraction results, which show that the triangular lattice of the carbon nanotube bundles continues to persist up to similar to10 GPa. The lattice is seen to relax just before the phase transformation, which is observed at similar to10 GPa. Further, our results display the reversibility of the 2D lattice symmetry even after compression up to 13 GPa well beyond the 5 GPa value observed recently. These experimental results explicitly validate the predicted remarkable mechanical resilience of the nanotubes.
Resumo:
We have investigated quadratic nonlinearity (beta(HRS)) and linear and circular depolarization ratios (D and D', respectively) of a series of 1:1 complexes of tropyliumtetrafluoroborate as a cation and methyl-substituted benzenes as pi-donors by making polarization resolved hyper-Rayleigh scattering measurements in solution. The measured D and D' values are much lower than the values expected from a typical sandwich or a T-shaped geometry of a complex. In the cation-pi complexes studied here, the D value varies from 1.36 to 1.46 and D' from 1.62 to 1.72 depending on the number of methyl substitutions on the benzene ring. In order to probe it further, beta, D and D' were computed using the Zerner intermediate neglect of differential overlap-correction vector self-consistent reaction field technique including single and double configuration interactions in the absence and presence of BF4- anion. In the absence of the anion, the calculated value of D varies from 4.20 to 4.60 and that of D' from 2.45 to 2.72 which disagree with experimental values. However, by arranging three cation-pi BF4- complexes in a trigonal symmetry, the computed values are brought to agreement with experiments. When such an arrangement was not considered, the calculated beta values were lower than the experimental values by more than a factor of two. This unprecedented influence of the otherwise ``unimportant'' anion in solution on the beta value and depolarization ratios of these cation-pi complexes is highlighted and emphasized in this paper. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4716020]
Resumo:
We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organize into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention-based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first motivate that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc wireless network (described above) as a single cell, we study the hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (t) (1/eta), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterization of the optimal operating point. Simulation results are provided comparing the performance of the optimal strategy derived here with some simple strategies for operating the network.