917 resultados para Disturbance regime
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Selected hydrometeorological (HM) data for the Pacific Northwest and atmospheric and North Pacific sea-surface temperature (SST) data are examined for three successive periods that are subsets of the historical record to estimate if their characteristics have changed.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Climatological events that disturb a landscape are important components in ecosystem processes. Modern ecosystem management plans now hope to incorporate knowledge of the spatial distribution and frequency of disturbance climate. The following describes a few analytic tools developed to help managers include disturbance climate in an ecosystem management plan for areas in the Columbia River Basin of the northwestern United States.
Resumo:
The effects of turbulent Reynolds number on the statistical behaviour of the displacement speed have been studied using three-dimensional Direct Numerical Simulation of statistically planar turbulent premixed flames. The probability of finding negative values of the displacement speed is found to increase with increasing turbulent Reynolds number when the Damkhler number is held constant. It has been shown that the statistical behaviour of the Surface Density Function, and its strain rate and curvature dependence, plays a key role in determining the response of the different components of displacement speed. Increasing the turbulent Reynolds number is shown to reduce the strength of the correlations between tangential strain rate and dilatation rate with curvature, although the qualitative nature of the correlations remains unaffected. The dependence of displacement speed on strain rate and curvature is found to weaken with increasing turbulent Reynolds number when either Damkhler or Karlovitz number is held constant, but the qualitative nature of the correlation remains unaltered. The implications of turbulent Reynolds number effects in the context of Flame Surface Density (FSD) modelling have also been addressed, with emphasis on the influence of displacement speed on the curvature and propagation terms in the FSD balance equation. © 2011 Nilanjan Chakraborty et al.
Resumo:
Three spatial structure groups of radionuclides in U and Th series, 210Pb-excess and 137Cs, and 40K were found based on analyzing temporal and spatial datum of their content by factor analysis with oblique rotation in Nhatrang bay. U and Th spatial structure with their contours decreased toward the offshore, ran longshore and divided seawater of bay into two parts with strong gradient on both sides. Inside part located from center of Nhatrang bay toward the seashore with three main deposit centers of their contents higher than 23 Bq/kg.dry for 238U and 40 Bq/kg.dry for 232Th, indicated unstability of shoreline. Almost sediments coming from river extended toward the offshore, were stopped and transported toward southeastern. The outside part was less than above mentioned content. The boundary line between two parts superposed with the constantly limit line of turbid plume in the rainy season. Direct influence of the continental runoff was limited by the 9 Bq/kg.dry contour of 238U, 19 Bq/kg.dry contour of 232Th. Longshore current was a predominant process whereas lateral transport as sifting and winnowing process of finer grains in sediments of Nhatrang bay. Areas that had very low content of 137Cs and 210 Pb-excess adjoining shoreline showed areas being eroded. Accumulation of 137Cs and 210 Pbexcess nearby river mouth characterized for fine compositions of sediments controlled by seasonal plumes and sites further toward the south indicated finer materials transported from river and accumulated in lack of hydrodynamic process. Near shore accumulation of 40K revealed the sediments there originated from bed erosion.
Resumo:
The characteristics of the scalar dissipation rate transport in the corrugated flamelets and the thin reaction zones regimes are studied based on two three-dimensional Direct Numerical Simulation (DNS) databases for freely propagating statistically planar turbulent premixed flames. The turbulent flame parameters are so chosen that the database which represents the corrugated flamelets regime has a global Damköhler number Da>1 whereas the database representing the thin reaction zones regime has Da <1. It is demonstrated that the terms originating from the correlation between fluctuating velocity and scalar gradient T1 shows strong Da dependence. The terms originating from dilatation T2, the scalar inner product of gradients of velocity and scalar fields T3 and the correlation between reaction rate and scalar gradients T4 and the dissipation term D2 remain important for both the flames. However, T3 dissipates scalar dissipation rate in the Da > 1 flame while it produces scalar dissipation rate in the Da < 1 flame. This difference is because of the change in the alignment between scalar and velocity gradients
Resumo:
We studied the altitudinal ranging of one habituated group of black-crested gibbons (Nomascus concolor) at Dazhaizi, Mt. Wuliang, Yunnan, China, between March 2005 and April 2006. The group ranged from 1,900 to 2,680 m above sea level. Food distribution was the driving force behind the altitudinal ranging patterns of the study group. They spent 83.2% of their time ranging between 2,100 and 2,400 m, where 75.8% of important food patches occurred. They avoided using the area above 2,500 m despite a lack of human disturbance there, apparently because there were few food resources. Temperature had a limited effect on seasonal altitudinal ranging but probably explained the diel altitudinal ranging of the group, which tended to use the lower zone in the cold morning and the higher zone in the warm afternoon. Grazing goats, the main disturbance, were limited to below 2,100 m, which was defined as the high-disturbance area (HDA). Gibbons spent less time in the HDA and, when ranging there, spent more time feeding and travelling and less time resting and singing. Human activities directly influenced gibbon behaviour, might cause forest degradation and create dispersal barriers between populations. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
This paper is the third part of a report on systematic measurements and analyses of wind-generated water waves in a laboratory environment. The results of the measurements of the turbulent flow on the water side are presented here, the details of which include the turbulence structure, the correlation functions, and the length and velocity scales. It shows that the mean turbulent velocity profiles are logarithmic, and the flows are hydraulically rough. The friction velocity in the water boundary layer is an order of magnitude smaller than that in the wind boundary layer. The level of turbulence is enhanced immediately beneath the water surface due to micro-breaking, which reflects that the Reynolds shear stress is of the order u *w 2. The vertical velocities of the turbulence are related to the relevant velocity scale at the still-water level. The autocorrelation function in the vertical direction shows features of typical anisotropic turbulence comprising a large range of wavelengths. The ratio between the microscale and macroscale can be expressed as λ/Λ=a Re Λ n, with the exponent n slightly different from -1/2, which is the value when turbulence production and dissipation are in balance. On the basis of the wavelength and turbulent velocity, the free-surface flows in the present experiments fall into the wavy free-surface flow regime. The integral turbulent scale on the water side alone underestimates the degree of disturbance at the free surface. © 2012 Elsevier B.V.
Resumo:
The performance of algebraic flame surface density (FSD) models has been assessed for flames with nonunity Lewis number (Le) in the thin reaction zones regime, using a direct numerical simulation (DNS) database of freely propagating turbulent premixed flames with Le ranging from 0.34 to 1.2. The focus is on algebraic FSD models based on a power-law approach, and the effects of Lewis number on the fractal dimension D and inner cut-off scale η i have been studied in detail. It has been found that D is strongly affected by Lewis number and increases significantly with decreasing Le. By contrast, η i remains close to the laminar flame thermal thickness for all values of Le considered here. A parameterisation of D is proposed such that the effects of Lewis number are explicitly accounted for. The new parameterisation is used to propose a new algebraic model for FSD. The performance of the new model is assessed with respect to results for the generalised FSD obtained from explicitly LES-filtered DNS data. It has been found that the performance of the most existing models deteriorates with decreasing Lewis number, while the newly proposed model is found to perform as well or better than the most existing algebraic models for FSD. © 2012 Mohit Katragadda et al.