954 resultados para Distributed sensing
Resumo:
In this paper, a comprehensive planning methodology is proposed that can minimize the line loss, maximize the reliability and improve the voltage profile in a distribution network. The injected active and reactive power of Distributed Generators (DG) and the installed capacitor sizes at different buses and for different load levels are optimally controlled. The tap setting of HV/MV transformer along with the line and transformer upgrading is also included in the objective function. A hybrid optimization method, called Hybrid Discrete Particle Swarm Optimization (HDPSO), is introduced to solve this nonlinear and discrete optimization problem. The proposed HDPSO approach is a developed version of DPSO in which the diversity of the optimizing variables is increased using the genetic algorithm operators to avoid trapping in local minima. The objective function is composed of the investment cost of DGs, capacitors, distribution lines and HV/MV transformer, the line loss, and the reliability. All of these elements are converted into genuine dollars. Given this, a single-objective optimization method is sufficient. The bus voltage and the line current as constraints are satisfied during the optimization procedure. The IEEE 18-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate the unavoidable need for optimal control on the DG active and reactive power and capacitors in distribution networks.
Resumo:
A microgrid may be supplied from inertial (rotating type) and non-inertial (converter-interfaced) distributed generators (DGs). However the dynamic response of these two types of DGs is different. Inertial DGs have a slower response due to their governor characteristics while non inertial DGs have the ability to respond very quickly. The focus of this paper is to propose better controls using droop characteristics to improve the dynamic interaction between different DG types in an autonomous microgrid. The transient behavior of DGs in the microgrid is investigated during the DG synchronization and load changes. Power sharing strategies based on frequency and voltage droop are considered for DGs. Droop control strategies are proposed for DGs to improve the smooth synchronization and dynamic power sharing minimizing transient oscillations in the microgrid. Simulation studies are carried out on PSCAD for validation.
Resumo:
Background There has been increasing interest in assessing the impacts of temperature on mortality. However, few studies have used a case–crossover design to examine non-linear and distributed lag effects of temperature on mortality. Additionally, little evidence is available on the temperature-mortality relationship in China, or what temperature measure is the best predictor of mortality. Objectives To use a distributed lag non-linear model (DLNM) as a part of case–crossover design. To examine the non-linear and distributed lag effects of temperature on mortality in Tianjin, China. To explore which temperature measure is the best predictor of mortality; Methods: The DLNM was applied to a case¬−crossover design to assess the non-linear and delayed effects of temperatures (maximum, mean and minimum) on deaths (non-accidental, cardiopulmonary, cardiovascular and respiratory). Results A U-shaped relationship was consistently found between temperature and mortality. Cold effects (significantly increased mortality associated with low temperatures) were delayed by 3 days, and persisted for 10 days. Hot effects (significantly increased mortality associated with high temperatures) were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. Conclusions In Tianjin, extreme cold and hot temperatures increased the risk of mortality. Results suggest that the effects of cold last longer than the effects of heat. It is possible to combine the case−crossover design with DLNMs. This allows the case−crossover design to flexibly estimate the non-linear and delayed effects of temperature (or air pollution) whilst controlling for season.
Resumo:
The structural, optical, and gas-sensing properties of spray pyrolysis deposited Cu doped ZnO thin films were investigated. Gas response of the undoped and doped films to N02 (oxidizing) gas shows an increase and decrease in resistance, respectively, indicating p-type conduction in doped samples. The UV-Vis spectra of the films show decrease in the bandgap with increasing Cu concentration in ZnO. The observed p-type conductivity is attributed to the holes generated by incorporated Cu atoms on Zn sites in ZnO thin films. The X-ray diffraction spectra showed that samples are polycrystalline with the hexagonal wurtzite structure and increasing the concentration of Cu caused a decrease in the intensity of the dominant (002) peak. The surface morphology of films was studied by scanning electron microscopy and the presence of Cu was also confirmed by X-ray photoelectron spectroscopy. Seebeck effect measurements were utilized to confirm the p-type conduction of Cu doped ZnO thin films. Copyright © 2009 American Scientific Publishers All rights reserved.
Reversed bias Pt/nanostructured ZnO Schottky diode with enhanced electric field for hydrogen sensing
Resumo:
In this paper, the effect of electric field enhancement on Pt/nanostructured ZnO Schottky diode based hydrogen sensors under reverse bias condition has been investigated. Current-voltage characteristics of these diodes have been studied at temperatures from 25 to 620 °C and their free carrier density concentration was estimated by exposing the sensors to hydrogen gas. The experimental results show a significantly lower breakdown voltage in reversed bias current-voltage characteristics than the conventional Schottky diodes and also greater lateral voltage shift in reverse bias operation than the forward bias. This can be ascribed to the increased localized electric fields emanating from the sharp edges and corners of the nanostructured morphologies. At 620 °C, voltage shifts of 114 and 325 mV for 0.06% and 1% hydrogen have been recorded from dynamic response under the reverse bias condition. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Nanowires of different metal oxides (SnO2, ZnO) have been grown by evaporation-condensation process. Their chemical composition has been investigated by using XPS. The standard XPS quantification through main photoelectron peaks, modified Auger parameter and valence band spectra were examined for the accurate determination of oxidation state of metals in the nanowires. Morphological investigation has been conducted by acquiring and analyzing the SEM images. For the simulation of working conditions of sensor, the samples were annealed in ultra high vacuum (UHV) up to 500°C and XPS analysis repeated after this treatment. Finally, the nanowires of SnO 2 have were used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. Copyright © 2008 John Wiley & Sons, Ltd.
Resumo:
Pt/graphene nanosheet/SiC based devices are fabricated and characterized and their performances toward hydrogen gas are investigated. The graphene nanosheets are synthesized via the reduction of spray-coated graphite oxide deposited onto SiC substrates. Raman and X-ray photoelectron spectroscopies indicate incomplete reduction of the graphite oxide, resulting in partially oxidized graphene nanosheet layers of less than 10 nm thickness. The effects of interfaces on the nonlinear behavior of the Pt/graphene and graphene/SiC junctions are investigated. Current-voltage measurements of the sensors toward 1% hydrogen in synthetic air gas mixture at various temperatures ranging up to 100. ° C are performed. From the dynamic response, a voltage shift of ∼100 mV is recorded for 1% hydrogen at a constant current bias of 1 mA at 100. °C. © 2010 American Chemical Society.
Resumo:
Distributed Denial-of-Service (DDoS) attacks continue to be one of the most pernicious threats to the delivery of services over the Internet. Not only are DDoS attacks present in many guises, they are also continuously evolving as new vulnerabilities are exploited. Hence accurate detection of these attacks still remains a challenging problem and a necessity for ensuring high-end network security. An intrinsic challenge in addressing this problem is to effectively distinguish these Denial-of-Service attacks from similar looking Flash Events (FEs) created by legitimate clients. A considerable overlap between the general characteristics of FEs and DDoS attacks makes it difficult to precisely separate these two classes of Internet activity. In this paper we propose parameters which can be used to explicitly distinguish FEs from DDoS attacks and analyse two real-world publicly available datasets to validate our proposal. Our analysis shows that even though FEs appear very similar to DDoS attacks, there are several subtle dissimilarities which can be exploited to separate these two classes of events.
Resumo:
Autonomous development of sensorimotor coordination enables a robot to adapt and change its action choices to interact with the world throughout its lifetime. The Experience Network is a structure that rapidly learns coordination between visual and haptic inputs and motor action. This paper presents methods which handle the high dimensionality of the network state-space which occurs due to the simultaneous detection of multiple sensory features. The methods provide no significant increase in the complexity of the underlying representations and also allow emergent, task-specific, semantic information to inform action selection. Experimental results show rapid learning in a real robot, beginning with no sensorimotor mappings, to a mobile robot capable of wall avoidance and target acquisition.
Resumo:
Unusual event detection in crowded scenes remains challenging because of the diversity of events and noise. In this paper, we present a novel approach for unusual event detection via sparse reconstruction of dynamic textures over an overcomplete basis set, with the dynamic texture described by local binary patterns from three orthogonal planes (LBPTOP). The overcomplete basis set is learnt from the training data where only the normal items observed. In the detection process, given a new observation, we compute the sparse coefficients using the Dantzig Selector algorithm which was proposed in the literature of compressed sensing. Then the reconstruction errors are computed, based on which we detect the abnormal items. Our application can be used to detect both local and global abnormal events. We evaluate our algorithm on UCSD Abnormality Datasets for local anomaly detection, which is shown to outperform current state-of-the-art approaches, and we also get promising results for rapid escape detection using the PETS2009 dataset.
Resumo:
This paper examines the rapid and ad hoc development and interactions of participative citizen communities during acute events, using the examples of the 2011 floods in Queensland, Australia, and the global controversy surrounding Wikileaks and its spokesman, Julian Assange. The self-organising community responses to such events which can be observed in these cases bypass or leapfrog, at least temporarily, most organisational or administrative hurdles which may otherwise frustrate the establishment of online communities; they fast-track the processes of community development and structuration. By understanding them as a form of rapid prototyping, e-democracy initiatives can draw important lessons from observing the community activities around such acute events.
Resumo:
Compressive Sensing (CS) is a popular signal processing technique, that can exactly reconstruct a signal given a small number of random projections of the original signal, provided that the signal is sufficiently sparse. We demonstrate the applicability of CS in the field of gait recognition as a very effective dimensionality reduction technique, using the gait energy image (GEI) as the feature extraction process. We compare the CS based approach to the principal component analysis (PCA) and show that the proposed method outperforms this baseline, particularly under situations where there are appearance changes in the subject. Applying CS to the gait features also avoids the need to train the models, by using a generalised random projection.