909 resultados para Distributed parameter networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP 2015). 7 to 9, Apr, 2015. Singapure, Singapore.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, due to the widespread use of computers and the internet, students are trading libraries for the World Wide Web and laboratories with simulation programs. In most courses, simulators are made available to students and can be used to proof theoretical results or to test a developing hardware/product. Although this is an interesting solution: low cost, easy and fast way to perform some courses work, it has indeed major disadvantages. As everything is currently being done with/in a computer, the students are loosing the “feel” of the real values of the magnitudes. For instance in engineering studies, and mainly in the first years, students need to learn electronics, algorithmic, mathematics and physics. All of these areas can use numerical analysis software, simulation software or spreadsheets and in the majority of the cases data used is either simulated or random numbers, but real data could be used instead. For example, if a course uses numerical analysis software and needs a dataset, the students can learn to manipulate arrays. Also, when using the spreadsheets to build graphics, instead of using a random table, students could use a real dataset based, for instance, in the room temperature and its variation across the day. In this work we present a framework which uses a simple interface allowing it to be used by different courses where the computers are the teaching/learning process in order to give a more realistic feeling to students by using real data. A framework is proposed based on a set of low cost sensors for different physical magnitudes, e.g. temperature, light, wind speed, which are connected to a central server, that the students have access with an Ethernet protocol or are connected directly to the student computer/laptop. These sensors use the communication ports available such as: serial ports, parallel ports, Ethernet or Universal Serial Bus (USB). Since a central server is used, the students are encouraged to use sensor values results in their different courses and consequently in different types of software such as: numerical analysis tools, spreadsheets or simply inside any programming language when a dataset is needed. In order to do this, small pieces of hardware were developed containing at least one sensor using different types of computer communication. As long as the sensors are attached in a server connected to the internet, these tools can also be shared between different schools. This allows sensors that aren't available in a determined school to be used by getting the values from other places that are sharing them. Another remark is that students in the more advanced years and (theoretically) more know how, can use the courses that have some affinities with electronic development to build new sensor pieces and expand the framework further. The final solution provided is very interesting, low cost, simple to develop, allowing flexibility of resources by using the same materials in several courses bringing real world data into the students computer works.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smart Grids (SGs) have emerged as the new paradigm for power system operation and management, being designed to include large amounts of distributed energy resources. This new paradigm requires new Energy Resource Management (ERM) methodologies considering different operation strategies and the existence of new management players such as several types of aggregators. This paper proposes a methodology to facilitate the coalition between distributed generation units originating Virtual Power Players (VPP) considering a game theory approach. The proposed approach consists in the analysis of the classifications that were attributed by each VPP to the distributed generation units, as well as in the analysis of the previous established contracts by each player. The proposed classification model is based in fourteen parameters including technical, economical and behavioural ones. Depending of the VPP strategies, size and goals, each parameter has different importance. VPP can also manage other type of energy resources, like storage units, electric vehicles, demand response programs or even parts of the MV and LV distribution network. A case study with twelve VPPs with different characteristics and one hundred and fifty real distributed generation units is included in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work models the competitive behaviour of individuals who maximize their own utility managing their network of connections with other individuals. Utility is taken as a synonym of reputation in this model. Each agent has to decide between two variables: the quality of connections and the number of connections. Hence, the reputation of an individual is a function of the number and the quality of connections within the network. On the other hand, individuals incur in a cost when they improve their network of contacts. The initial value of the quality and number of connections of each individual is distributed according to an initial (given) distribution. The competition occurs over continuous time and among a continuum of agents. A mean field game approach is adopted to solve the model, leading to an optimal trajectory for the number and quality of connections for each individual.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The way in which electricity networks operate is going through a period of significant change. Renewable generation technologies are having a growing presence and increasing penetrations of generation that are being connected at distribution level. Unfortunately, a renewable energy source is most of the time intermittent and needs to be forecasted. Current trends in Smart grids foresee the accommodation of a variety of distributed generation sources including intermittent renewable sources. It is also expected that smart grids will include demand management resources, widespread communications and control technologies required to use demand response are needed to help the maintenance in supply-demand balance in electricity systems. Consequently, smart household appliances with controllable loads will be likely a common presence in our homes. Thus, new control techniques are requested to manage the loads and achieve all the potential energy present in intermittent energy sources. This thesis is focused on the development of a demand side management control method in a distributed network, aiming the creation of greater flexibility in demand and better ease the integration of renewable technologies. In particular, this work presents a novel multi-agent model-based predictive control method to manage distributed energy systems from the demand side, in presence of limited energy sources with fluctuating output and with energy storage in house-hold or car batteries. Specifically, here is presented a solution for thermal comfort which manages a limited shared energy resource via a demand side management perspective, using an integrated approach which also involves a power price auction and an appliance loads allocation scheme. The control is applied individually to a set of Thermal Control Areas, demand units, where the objective is to minimize the energy usage and not exceed the limited and shared energy resource, while simultaneously indoor temperatures are maintained within a comfort frame. Thermal Control Areas are overall thermodynamically connected in the distributed environment and also coupled by energy related constraints. The energy split is performed based on a fixed sequential order established from a previous completed auction wherein the bids are made by each Thermal Control Area, acting as demand side management agents, based on the daily energy price. The developed solutions are explained with algorithms and are applied to different scenarios, being the results explanatory of the benefits of the proposed approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Documento submetido para revisão pelos pares. A publicar em Journal of Parallel and Distributed Computing. ISSN 0743-7315

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telecommunications and network technology is now the driving force that ensures continued progress of world civilization. Design of new and expansion of existing network infrastructures requires improving the quality of service(QoS). Modeling probabilistic and time characteristics of telecommunication systems is an integral part of modern algorithms of administration of quality of service. At present, for the assessment of quality parameters except simulation models analytical models in the form of systems and queuing networks are widely used. Because of the limited mathematical tools of models of these classes the corresponding parameter estimation of parameters of quality of service are inadequate by definition. Especially concerning the models of telecommunication systems with packet transmission of multimedia real-time traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the high cost of a large ATM network working up to full strength to apply our ideas about network management, i.e., dynamic virtual path (VP) management and fault restoration, we developed a distributed simulation platform for performing our experiments. This platform also had to be capable of other sorts of tests, such as connection admission control (CAC) algorithms, routing algorithms, and accounting and charging methods. The platform was posed as a very simple, event-oriented and scalable simulation. The main goal was the simulation of a working ATM backbone network with a potentially large number of nodes (hundreds). As research into control algorithms and low-level, or rather cell-level methods, was beyond the scope of this study, the simulation took place at a connection level, i.e., there was no real traffic of cells. The simulated network behaved like a real network accepting and rejecting SNMP ones, or experimental tools using the API node

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this project I have carried out a vulnerability assessment of a component of the Condor Middleware. In this assessment I have sought and found the more dangerous software vulnerabilities of this system, I have reported them to the development team such that they may be fixed, and thus improve the security of this distributed system, and the networks that use it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquest treball pretén elaborar un sistema de detecció d'incendis implementat sota una xarxa de sensors sense fils. Aquesta xarxa està formada per petits dispositius autònoms equipats amb un transmissor de ràdio, un microcontrolador, diferents sensors (temperatura, lluminositat i efecte Hall) i alimentació per bateries (AA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major problems when using non-dedicated volunteer resources in adistributed network is the high volatility of these hosts since they can go offlineor become unavailable at any time without control. Furthermore, the use ofvolunteer resources implies some security issues due to the fact that they aregenerally anonymous entities which we know nothing about. So, how to trustin someone we do not know?.Over the last years an important number of reputation-based trust solutionshave been designed to evaluate the participants' behavior in a system.However, most of these solutions are addressed to P2P and ad-hoc mobilenetworks that may not fit well with other kinds of distributed systems thatcould take advantage of volunteer resources as recent cloud computinginfrastructures.In this paper we propose a first approach to design an anonymous reputationmechanism for CoDeS [1], a middleware for building fogs where deployingservices using volunteer resources. The participants are reputation clients(RC), a reputation authority (RA) and a certification authority (CA). Users needa valid public key certificate from the CA to register to the RA and obtain thedata needed to participate into the system, as now an opaque identifier thatwe call here pseudonym and an initial reputation value that users provide toother users when interacting together. The mechanism prevents not only themanipulation of the provided reputation values but also any disclosure of theusers' identities to any other users or authorities so the anonymity isguaranteed.