928 resultados para Dispersal stages
Resumo:
Anabarilius grahami is a cyprinoid fish endemic to Fuxian Lake, Yunnan, China. In this study, a comprehensive staging series of A. grahami was produced. The embryonic development of A. grahami was divided into six main periods: zygote period, cleavage per
Resumo:
Results of a preliminary investigation on the overall chemical nature of fish skin mucin in lung fish, Clarias batrachus, with special reference to water soluble low molecular weight compounds, are presented. Changes observed during room temperature spoilage have been studied with a view to present a new approach towards the assessment of freshness in fish inspection. pH of the mucin was distinctly alkaline (8.2) and remained unchanged during spoilage. Much of the nitrogen was found to be present in the glycoprotein fraction. Free amino acids and purine bases were present in appreciable quantities in the aqueous extracts which registered a significant increase after 10 hrs. Post-mortem increase in total solids was accompanied by a slight rise in protein nitrogen which may indicate tissue breakdown. Increase in TVN was also observed to occur earlier in the outside mucin as compared to the inside muscle. Presence of free sugars or sialic acid could not be confirmed nor was there any indication of cholesterol and lipoid material as stated in earlier literature.
Resumo:
The East Asian respond with a marked facial flushing and mild to moderate symptoms of intoxication after drinking the amounts of alcohol that has no detectable effect on European. The alcohol sensitivity in Orientals is due to a delayed oxidation of aceta
Resumo:
Toxicological effects of Asulox-40 and Emisan-6 to eggs and early life history stages of Sarotherodon mossambicus were reported. 80% of egg hatching occurred in the controls, 1 p.p.m and 5 p.p.m concentrations of Asulox-40. 10 p.p.m. and 50 p.p.m. concentrations of the same toxicants had 70% and 60% hatchings while in Emisan-6 in the same concentrations the hatching were 70% and! 40%. In 100 p.p.m. concentration of both toxicants 20% incomplete hatching occurred. In Emisan-6 Lc 50 and Lc 100 values were recorded at 32 hand 96h respectively in 10 p.p.m. concentrations. In Asulox-40 the same values were recorded in 24h and 40h respectively at 50 p.p.m. concentration. The fish activity during the experimental period showed initial hyper activity. It was established that the Emisan-6 is more harmful to S. mossambicus than Asulox-40. The harmless concentrations of these chemicals were 1.2 p.p.m. for Asulox-40 and 0.6 p.p.m. for Emisan-6.
Resumo:
Zoea 2(Z SUB-2 ) Mysis 1 (M SUB-1 ) and Postlarva 1 (P SUB-1 ) of P. monodon artificially spawned in closed-system concrete hatchery tanks were bioassayed for their tolerance to the antibiotic furanace. The setup consisted of four 20-liter capacity plastic basins previously conditioned for 15 days with freshwater in full sunlight. During the experiment, each basin was filled with 5 liters of seawater to which was added filtered Chaetoceros and Brachionus to give densities of 5 . 0-7 . 5 x 10 SUP-4 cells/ml and 10-20 individuals/ml, respectively. The following are the properties of the water used throughout the experiments: salinity, 26-32%; pH, 7 . 3-8 . 4; temperature, 25-30 degree C; dissolved oxygen, 4 . 5-8 . 4 ppm; nitrite, 0 . 36-0 . 99 ppm; and ammonia, 0 . 10-0 . 30 ppm. To each basin were added 50 healthy larvae of specific stages of P. monodon. After an initial acclimation of one hour in the medium, preweighed amounts of the antibiotic were added and thoroughly dissolved. The concentrations tested were 1 . 0, 2 . 0 and 3 . 0 ppm. One basin always served as control. After 24 hours of exposure, the surviving population in each basin was counted. The survivors were then examined thoroughly under the microscope for unusual behavior and morphological defects brought about by the exposure. To minimize wide variations in the medium as a result of feeding and other manipulations, the systems were all prepared at 9:00 a.m. each time, and the feeds on two instances, one at 5:00 p.m. and another at 5:00 a.m. Fifteen trials conducted with Z SUB-2 showed survival ranges of 68% to 98% with a mean of 77 . 6% in the controls; 32% to 94% with a mean of 65 . 7% at 1 ppm, and 0% to 56% with a mean of 36 . 5% at 2 ppm. There were no survivors at 3 ppm. Interpolation from the survival-dose curve gave a 24-hr LC SUB-50 of approximately 1 . 6 ppm.
Resumo:
The objective of this study is to determine survival rates of different postlarval stages upon stocking in the Leganes ponds. Twelve 3m x 2m x 2m suspension nets made of nylon cloth (mesh size = 0 . 1 mm) were set up in a Leganes Station pond (ave. water depth = 1 m) by means of 3-m long poles stacked at distances approximating the area of each net. The net bottom was filled with topsoil at least 15 cm thick to stimulate the pond bottom. At least 60 cm of the upper edge of each net was above the water level to prevent mixing of water inside and outside the net. P.monodon of stages P SUB-11 , P SUB-15 , P SUB-21 (from the hatchery) and P SUB-25 (from the wet lab) were stocked in the nets at 200/sq m or 1,200 fry/net. Due to lack of fry, only one P SUB-25 net was stocked. Each net had two large dried miapi branches as shelter from predation and cannibalism for the young sugpo fry. Fresh lablab was fed at the rate of one pail (approximately 5 kg) every four days per net. Harvest data show relatively higher survival rates for P SUB-15 and P SUB-18 compared to P SUB-11 and P SUB-25 with no significant difference between these two stages. The results for P SUB-25 may not be valid because the stock came from the wet lab in comparison to the other postlarval stages which were reared in the hatchery. Moreover, the P SUB-25 stock had no replicates and the net itself (no. 10) was discovered to have many holes. These preliminary results point to P SUB-15 as the best stage for harvest from the hatchery in terms of high pond recovery and lesser expense in rearing compared to older postlarvae.
Resumo:
Toxicity of inorganic mercury to different life history stages of fresh water fishes, Cyprinus carpio and Cirrhinus mrigala were demonstrated by static bioassays. 48 and 94% of egg hatching occurred in controls at 72 and 24h of experimentation in C. carpio and C. mrigala respectively. While fish eggs in water containing mercuric chloride showed delayed development as compared to the control. LC50, LC100 and safe concentrations of hatchling, fry and fingerling were calculated. Hatchling and fry were observed to be more susceptible as compared to fingerlings of C. carpio and C. mrigala.
Resumo:
Diets containing Chaetoceros gracilis plus Artemia nauplii artificially prepared diet, Diet-B, and two commercial feeds Tapes and mysid meals, were fed to larvae of P. japonicus. Highest survival rate was obtained when larvae were fed with Diet-B. The results show that the early larval stages of P. japonicus can be reared on artificially prepared diets. Since the chemical composition of the diet is known, it can be used as supplemental data for larval feeding development and nutritional requirement studies for the early larval stages of Penaeus japonicus and/or other penaeids. Information is tabulated on feeds and feeding rates used, composition of the artificial diet, fatty acid composition of lipids of the different diets, and of the sterols of the different diets.
Resumo:
An experiment was undertaken studying the early life history of Portunus pelagicus in order to obtain information of relevance to rearing techniques for crabs.
Resumo:
Milkfish fry were artificially bred and reared in the laboratory and the pigmentation pattern of the different developmental stages of the larvae are described in detail, with illustrations.
Resumo:
Seven stages in the life history of the milkfish C. chanos , are recognized and suggested: A, embryonic; B, yolksac larval; C, larval; D, postlarval; E, juvenile; F, subadult; G. adult. An outline is presented of the life history. It is concluded that the milkfish, throughout the known stages of their life history are well adapted and equipped for optimal survival. High swimming performance, broad flexibility in feeding habits, high adaptability to a wide range of physicochemical conditions of the environment are but a few of the adaptations. The main driving force in all developmental stages is the evolutionary response to food distribution and availability followed by predation pressure.