969 resultados para Disfunção da ATM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A report and recommendations by the Illinois Office of Banks and Real Estate in response to Illinois Senate Resolution No. 134, adopted May 26, 1999, which requested the Office to study safety and security issues regarding the use of automated teller machines by consumers--particularly, the merits of the reverse PIN warning system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in components of the Mre 11/Rad50/Nbs1 complex give rise to genetic disorders characterized by neurological abnormalities, radiosensitivity, cell cycle checkpoint defects, genomic instability and cancer predisposition. Evidence exists that this complex associates with chromatin during DNA replication and acts as a sensor of double strand breaks (dsbs) in DNA after exposure to radiation. A series of recent reports provides additional support that the complex senses breaks in DNA and relays this information to ATM, mutated in ataxia-telangiectasia (A-T), which in turn activates pathways for cell cycle checkpoint activation. Paradoxically members of the Mre11 complex are also downstream of ATM in these pathways. Here, Lavin attempts to make sense of this sensing mechanism with reference to a series of recent reports on the topic. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine/threonine protein kinase AMP-activated protein kinase (AMPK) is a key metabolic stress-responsive factor that promotes the adaptation of cells to their microenvironment. Elevated concentrations of intracellular AMP, caused by metabolic stress, are known to activate AMPK by phosphorylation of the catalytic subunit. Recently, the tumor suppressor serine/threonine protein kinase LKB1 was identified as an upstream kinases, AMPKKs. In the current study, we found that stimulation with growth factors also caused AMPK-alpha subunit phosphorylation. Interestingly, even an LKB1-nonexpressing cancer cell line, HeLa, exhibited growth factor-stimulated AMPK-alpha subunit phosphorylation, suggesting the presence of an LKB1-independent pathway for AMPK-alpha subunit phosphorylation. In the human pancreatic cancer cell line PANC-1, AMPK-alpha subunit phosphorylation promoted by IGF-I was suppressed by antisense ataxia telangiectasia mutated (ATM) expression. We found that IGF-1 also induced AMPK-alpha subunit phosphorylation in the human normal fibroblast TIG103 cell line, but failed to do so in a human fibroblast AT2-KY cell line lacking ATM. Immunoprecipitates of ATM collected from IGF-1-stimulated cells also caused the phosphorylation of the AMPK-alpha subunit in vitro. IGF-1-stimulated ATM phosphorylation at both threonine and tyrosine residues, and our results demonstrated that the phosphorylation of tyrosine in the ATM molecule is important for AMPK-alpha subunit phosphorylation during IGF-1 signaling. These results suggest that IGF-1 induces AMPK-alpha subunit phosphorylation via an ATM-dependent and LKB1-independent pathway. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bloom syndrome and ataxia-telangiectasia are autosomal recessive human disorders characterized by immunodeficiency, genome instability and predisposition to develop cancer. Recent data reveal that the products of these two genes, BLM and ATM, interact and function together in recognizing abnormal DNA structures. To investigate the function of these two molecules in DNA damage recognition, we generated double knockouts of ATM(-/-) BLM-/- in the DT40 chicken B-lymphocyte cell line. The double mutant cells were viable and exhibited a variety of characteristics of both ATM(-/-) and BLM-/- cells. There was no evidence for exacerbation of either phenotype; however, the more extreme radiosensitivity seen in ATM(-/-) and the elevated sister chromatid exchange seen in BLM-/- cells were retained in the double mutants. These results suggest that ATM and BLM have largely distinct roles in recognizing different forms of damage in DNA, but are also compatible with partially overlapping functions in recognizing breaks in radiation-damaged DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) is a high molecular weight, protein (similar to350 kDa) containing a C-terminal protein kinase domain and a number of other putative domains not yet functionally defined. The majority of ATM gene mutations in A-T patients are truncating, resulting in prematurely terminated products that are highly unstable. Missense mutations within the kinase domain and elsewhere in the molecule alter the stability of the protein and lead to loss of protein kinase activity. Only rarely are patients observed with two missense mutations and this gives rise to a milder disease phenotype. Evidence for a dominant interfering effect on normal ATM kinase activity has been reported in cell lines transfected with missense mutant ATM and in cell lines from some A-T heterozygotes. The dominant negative effect of mutant ATM is manifested by an enhancement of cellular radiosensitivity and may be responsible for the cancer predisposition observed in carriers of ATM missense mutations. In this review, we explore the domain structure of the ATM molecule, sites of interaction with other proteins and the consequences of specific amino acid changes on function. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ataxia-telangiectasia mutated (ATM) protein kinase is activated in response to ionizing radiation (IR) and activates downstream DNA-damage signaling pathways. Although the role of ATM in the cellular response to ionizing radiation has been well characterized, its role in response to other DNA-damaging agents is less well defined. We previously showed that genistein, a naturally occurring isoflavonoid, induced increased ATM protein kinase activity, ATM-dependent phosphorylation of p53 on serine 15 and activation of the DNA-binding properties of p53. Here. we show that genistein also induces phosphorylation of p53 at serines 6, 9, 20,46, and 392, and that genistein-induced accumulation and phosphorylation of p53 is reduced in two ATM-deficient human cell lines. Also, we show that genistein induces phosphorylation of ATM on serine 1981 and phosphorylation of histone H2AX on serine 139. The related bioflavonoids, daidzein and biochanin A, did not induce either phosphorylation of p53 or ATM at these sites. Like genistein, quercetin induced phosphorylation of ATM on serine 198 1, and ATM-dependent phosphorylation of histone H2AX on serine 139; however, p53 accumulation and phosphorylation on serines 6, 9, 15, 20, 46, and 392 occurred in ATM-deficient cells, indicating that ATM is not required for quercetin-induced phosphorylation of p53. Our data suggest that genistein and quercetin induce different DNA-damage induced signaling pathways that, in the case of genistein, are highly ATM-dependent but, in the case of quercetin, may be ATM-dependent only for some downstream targets. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To analyse the expression of proteins involved in DNA double strand break detection and repair in the luminal and myoepithelial compartments of benign breast lesions and malignant breast tumours with myoepithelial differentiation. Methods: Expression of the ataxia telangiectasia (ATM) and p53 proteins was immunohistochemically evaluated in 18 benign and malignant myoepithelial tumours of the breast. Fifteen benign breast lesions with prominent myoepithelial compartment were also evaluated for these proteins, in addition to those in the MRE11-Rad50-NBS1 (MRN) complex, and the expression profiles were compared with those seen in eight independent non-cancer (normal breast) samples and in the surrounding normal tissues of the benign and malignant tumours examined. Results: ATM expression was higher in the myoepithelial compartment of three of 15 benign breast lesions and lower in the luminal compartment of eight of these lesions compared with that found in the corresponding normal tissue compartments. Malignant myoepithelial tumours overexpressed ATM in one of 18 cases. p53 was consistently negative in benign lesions and was overexpressed in eight of 18 malignant tumours. In benign breast lesions, expression of the MRN complex was significantly more reduced in myoepithelial cells (up to 73%) than in luminal cells (up to 40%) (p = 0.0005). Conclusions: Malignant myoepithelial tumours rarely overexpress ATM but are frequently positive for p53. In benign breast lesions, expression of the MRN complex was more frequently reduced in the myoepithelial than in the luminal epithelial compartment, suggesting different DNA repair capabilities in these two cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA double strand breaks represent the most threatening lesion to the integrity of the genome in cells exposed to ionizing radiation and radiomimetic chemicals. Those breaks are recognized, signaled to cell cycle checkpoints and repaired by protein complexes. The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangietasia (A-T) plays a central role in the recognition and signaling of DNA damage. ATM is one of an ever growing number of proteins which when mutated compromise the stability of the genome and predispose to tumour development. for recognising double strand breaks in DNA, maintaining genome stability and minimizing risk of cancer are discussed. (C) 2004 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the ATM gene (mutated in ataxia telangiectasia) in both humans and mice predispose to lymphoid tumors. A defect in this gene also causes neurodegeneration in humans and a less severe neurological phenotype in mice. There is some evidence that oxidative stress contributes to these defects, suggesting that antioxidants could alleviate the phenotype. We demonstrate here that the antioxidant 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO) dramatically delays the onset of thymic lymphomas in Atm(-/-) mice which is not due to an enhancement of apoptosis by CTMIO. We also show that this compound corrects neurobehavioral deficits in these mice and reduces oxidative damage to Purkinje cells. The likely mechanism of action of CTMIO is due to a reduction in oxidative stress, which is protective against both the tumor progression and the development of neurological abnormalities. These data suggest that antioxidant therapy has considerable potential in the management of ataxia telangiectasia and possibly other neurodegenerative disorders where oxidative stress is implicated. (c) 2006 Elsevier Inc. All rights reserved.