967 resultados para Discrete Conditional Phase-type model
Resumo:
We review the field of quantum optical information from elementary considerations to quantum computation schemes. We illustrate our discussion with descriptions of experimental demonstrations of key communication and processing tasks from the last decade and also look forward to the key results likely in the next decade. We examine both discrete (single photon) type processing as well as those which employ continuous variable manipulations. The mathematical formalism is kept to the minimum needed to understand the key theoretical and experimental results.
Resumo:
Attractor properties of a popular discrete-time neural network model are illustrated through numerical simulations. The most complex dynamics is found to occur within particular ranges of parameters controlling the symmetry and magnitude of the weight matrix. A small network model is observed to produce fixed points, limit cycles, mode-locking, the Ruelle-Takens route to chaos, and the period-doubling route to chaos. Training algorithms for tuning this dynamical behaviour are discussed. Training can be an easy or difficult task, depending whether the problem requires the use of temporal information distributed over long time intervals. Such problems require training algorithms which can handle hidden nodes. The most prominent of these algorithms, back propagation through time, solves the temporal credit assignment problem in a way which can work only if the relevant information is distributed locally in time. The Moving Targets algorithm works for the more general case, but is computationally intensive, and prone to local minima.
Resumo:
The thesis presents an experimentally validated modelling study of the flow of combustion air in an industrial radiant tube burner (RTB). The RTB is used typically in industrial heat treating furnaces. The work has been initiated because of the need for improvements in burner lifetime and performance which are related to the fluid mechanics of the com busting flow, and a fundamental understanding of this is therefore necessary. To achieve this, a detailed three-dimensional Computational Fluid Dynamics (CFD) model has been used, validated with experimental air flow, temperature and flue gas measurements. Initially, the work programme is presented and the theory behind RTB design and operation in addition to the theory behind swirling flows and methane combustion. NOx reduction techniques are discussed and numerical modelling of combusting flows is detailed in this section. The importance of turbulence, radiation and combustion modelling is highlighted, as well as the numerical schemes that incorporate discretization, finite volume theory and convergence. The study first focuses on the combustion air flow and its delivery to the combustion zone. An isothermal computational model was developed to allow the examination of the flow characteristics as it enters the burner and progresses through the various sections prior to the discharge face in the combustion area. Important features identified include the air recuperator swirler coil, the step ring, the primary/secondary air splitting flame tube and the fuel nozzle. It was revealed that the effectiveness of the air recuperator swirler is significantly compromised by the need for a generous assembly tolerance. Also, there is a substantial circumferential flow maldistribution introduced by the swirier, but that this is effectively removed by the positioning of a ring constriction in the downstream passage. Computations using the k-ε turbulence model show good agreement with experimentally measured velocity profiles in the combustion zone and proved the use of the modelling strategy prior to the combustion study. Reasonable mesh independence was obtained with 200,000 nodes. Agreement was poorer with the RNG k-ε and Reynolds Stress models. The study continues to address the combustion process itself and the heat transfer process internal to the RTB. A series of combustion and radiation model configurations were developed and the optimum combination of the Eddy Dissipation (ED) combustion model and the Discrete Transfer (DT) radiation model was used successfully to validate a burner experimental test. The previously cold flow validated k-ε turbulence model was used and reasonable mesh independence was obtained with 300,000 nodes. The combination showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust. The inner tube wall temperature predictions validated the experimental measurements in the largest portion of the thermocouple locations, highlighting a small flame bias to one side, although the model slightly over predicts the temperatures towards the downstream end of the inner tube. NOx emissions were initially over predicted, however, the use of a combustion flame temperature limiting subroutine allowed convergence to the experimental value of 451 ppmv. With the validated model, the effectiveness of certain RTB features identified previously is analysed, and an analysis of the energy transfers throughout the burner is presented, to identify the dominant mechanisms in each region. The optimum turbulence-combustion-radiation model selection was then the baseline for further model development. One of these models, an eccentrically positioned flame tube model highlights the failure mode of the RTB during long term operation. Other models were developed to address NOx reduction and improvement of the flame profile in the burner combustion zone. These included a modified fuel nozzle design, with 12 circular section fuel ports, which demonstrates a longer and more symmetric flame, although with limited success in NOx reduction. In addition, a zero bypass swirler coil model was developed that highlights the effect of the stronger swirling combustion flow. A reduced diameter and a 20 mm forward displaced flame tube model shows limited success in NOx reduction; although the latter demonstrated improvements in the discharge face heat distribution and improvements in the flame symmetry. Finally, Flue Gas Recirculation (FGR) modelling attempts indicate the difficulty of the application of this NOx reduction technique in the Wellman RTB. Recommendations for further work are made that include design mitigations for the fuel nozzle and further burner modelling is suggested to improve computational validation. The introduction of fuel staging is proposed, as well as a modification in the inner tube to enhance the effect of FGR.
Resumo:
Simulation is an effective method for improving supply chain performance. However, there is limited advice available to assist practitioners in selecting the most appropriate method for a given problem. Much of the advice that does exist relies on custom and practice rather than a rigorous conceptual or empirical analysis. An analysis of the different modelling techniques applied in the supply chain domain was conducted, and the three main approaches to simulation used were identified; these are System Dynamics (SD), Discrete Event Simulation (DES) and Agent Based Modelling (ABM). This research has examined these approaches in two stages. Firstly, a first principles analysis was carried out in order to challenge the received wisdom about their strengths and weaknesses and a series of propositions were developed from this initial analysis. The second stage was to use the case study approach to test these propositions and to provide further empirical evidence to support their comparison. The contributions of this research are both in terms of knowledge and practice. In terms of knowledge, this research is the first holistic cross paradigm comparison of the three main approaches in the supply chain domain. Case studies have involved building ‘back to back’ models of the same supply chain problem using SD and a discrete approach (either DES or ABM). This has led to contributions concerning the limitations of applying SD to operational problem types. SD has also been found to have risks when applied to strategic and policy problems. Discrete methods have been found to have potential for exploring strategic problem types. It has been found that discrete simulation methods can model material and information feedback successfully. Further insights have been gained into the relationship between modelling purpose and modelling approach. In terms of practice, the findings have been summarised in the form of a framework linking modelling purpose, problem characteristics and simulation approach.
Resumo:
A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single "zoom-in" user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.
Resumo:
With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^
Resumo:
This thesis deals with the evaporation of non-ideal liquid mixtures using a multicomponent mass transfer approach. It develops the concept of evaporation maps as a convenient way of representing the dynamic composition changes of ternary mixtures during an evaporation process. Evaporation maps represent the residual composition of evaporating ternary non-ideal mixtures over the full range of composition, and are analogous to the commonly-used residue curve maps of simple distillation processes. The evaporation process initially considered in this work involves gas-phase limited evaporation from a liquid or wetted-solid surface, over which a gas flows at known conditions. Evaporation may occur into a pure inert gas, or into one pre-loaded with a known fraction of one of the ternary components. To explore multicomponent masstransfer effects, a model is developed that uses an exact solution to the Maxwell-Stefan equations for mass transfer in the gas film, with a lumped approach applied to the liquid phase. Solutions to the evaporation model take the form of trajectories in temperaturecomposition space, which are then projected onto a ternary diagram to form the map. Novel algorithms are developed for computation of pseudo-azeotropes in the evaporating mixture, and for calculation of the multicomponent wet-bulb temperature at a given liquid composition. A numerical continuation method is used to track the bifurcations which occur in the evaporation maps, where the composition of one component of the pre-loaded gas is the bifurcation parameter. The bifurcation diagrams can in principle be used to determine the required gas composition to produce a specific terminal composition in the liquid. A simple homotopy method is developed to track the locations of the various possible pseudo-azeotropes in the mixture. The stability of pseudo-azeotropes in the gas-phase limited case is examined using a linearized analysis of the governing equations. Algorithms for the calculation of separation boundaries in the evaporation maps are developed using an optimization-based method, as well as a method employing eigenvectors derived from the linearized analysis. The flexure of the wet-bulb temperature surface is explored, and it is shown how evaporation trajectories cross ridges and valleys, so that ridges and valleys of the surface do not coincide with separation boundaries. Finally, the assumption of gas-phase limited mass transfer is relaxed, by employing a model that includes diffusion in the liquid phase. A finite-volume method is used to solve the system of partial differential equations that results. The evaporation trajectories for the distributed model reduce to those of the lumped (gas-phase limited) model as the diffusivity in the liquid increases; under the same gas-phase conditions the permissible terminal compositions of the distributed and lumped models are the same.
Resumo:
This thesis investigates the design of optimal tax systems in dynamic environments. The first essay characterizes the optimal tax system where wages depend on stochastic shocks and work experience. In addition to redistributive and efficiency motives, the taxation of inexperienced workers depends on a second-best requirement that encourages work experience, a social insurance motive and incentive effects. Calibrations using U.S. data yield higher expected optimal marginal income tax rates for experienced workers for most of the inexperienced workers. They confirm that the average marginal income tax rate increases (decreases) with age when shocks and work experience are substitutes (complements). Finally, more variability in experienced workers' earnings prospects leads to increasing tax rates since income taxation acts as a social insurance mechanism. In the second essay, the properties of an optimal tax system are investigated in a dynamic private information economy where labor market frictions create unemployment that destroys workers' human capital. A two-skill type model is considered where wages and employment are endogenous. I find that the optimal tax system distorts the first-period wages of all workers below their efficient levels which leads to more employment. The standard no-distortion-at-the-top result no longer holds due to the combination of private information and the destruction of human capital. I show this result analytically under the Maximin social welfare function and confirm it numerically for a general social welfare function. I also investigate the use of a training program and job creation subsidies. The final essay analyzes the optimal linear tax system when there is a population of individuals whose perceptions of savings are linked to their disposable income and their family background through family cultural transmission. Aside from the standard equity/efficiency trade-off, taxes account for the endogeneity of perceptions through two channels. First, taxing labor decreases income, which decreases the perception of savings through time. Second, taxation on savings corrects for the misperceptions of workers and thus savings and labor decisions. Numerical simulations confirm that behavioral issues push labor income taxes upward to finance saving subsidies. Government transfers to individuals are also decreased to finance those same subsidies.
Resumo:
Biotic interactions can have large effects on species distributions yet their role in shaping species ranges is seldom explored due to historical difficulties in incorporating biotic factors into models without a priori knowledge on interspecific interactions. Improved SDMs, which account for biotic factors and do not require a priori knowledge on species interactions, are needed to fully understand species distributions. Here, we model the influence of abiotic and biotic factors on species distribution patterns and explore the robustness of distributions under future climate change. We fit hierarchical spatial models using Integrated Nested Laplace Approximation (INLA) for lagomorph species throughout Europe and test the predictive ability of models containing only abiotic factors against models containing abiotic and biotic factors. We account for residual spatial autocorrelation using a conditional autoregressive (CAR) model. Model outputs are used to estimate areas in which abiotic and biotic factors determine species’ ranges. INLA models containing both abiotic and biotic factors had substantially better predictive ability than models containing abiotic factors only, for all but one of the four species. In models containing abiotic and biotic factors, both appeared equally important as determinants of lagomorph ranges, but the influences were spatially heterogeneous. Parts of widespread lagomorph ranges highly influenced by biotic factors will be less robust to future changes in climate, whereas parts of more localised species ranges highly influenced by the environment may be less robust to future climate. SDMs that do not explicitly include biotic factors are potentially misleading and omit a very important source of variation. For the field of species distribution modelling to advance, biotic factors must be taken into account in order to improve the reliability of predicting species distribution patterns both presently and under future climate change.
Resumo:
Queueing Theory is the mathematical study of queues or waiting lines. Queues abound in every day life - in computer networks, in tra c islands, in communication of electro-magnetic signals, in telephone exchange, in bank counters, in super market checkouts, in doctor's clinics, in petrol pumps, in o ces where paper works to be processed and many other places. Originated with the published work of A. K. Erlang in 1909 [16] on congestion in telephone tra c, Queueing Theory has grown tremendously in a century. Its wide range applications includes Operations Research, Computer Science, Telecommunications, Tra c Engineering, Reliability Theory, etc.
Resumo:
Cette thèse porte sur l’effet du risque de prix sur la décision des agriculteurs et les transformateurs québécois. Elle se divise en trois chapitres. Le premier chapitre revient sur la littérature. Le deuxième chapitre examine l’effet du risque de prix sur la production de trois produits, à savoir le maïs grain, la viande de porc et la viande d’agneau dans la province Québec. Le dernier chapitre est centré sur l’analyse de changement des préférences du transformateur québécois de porc pour ce qui est du choix de marché. Le premier chapitre vise à montrer l’importance de l’effet du risque du prix sur la quantité produite par les agriculteurs, tel que mis en évidence par la littérature. En effet, la littérature révèle l’importance du risque de prix à l’exportation sur le commerce international. Le deuxième chapitre est consacré à l’étude des facteurs du risque (les anticipations des prix et la volatilité des prix) dans la fonction de l’offre. Un modèle d’hétéroscédasticité conditionnelle autorégressive généralisée (GARCH) est utilisé afin de modéliser ces facteurs du risque. Les paramètres du modèle sont estimés par la méthode de l’Information Complète Maximum Vraisemblance (FIML). Les résultats empiriques montrent l’effet négatif de la volatilité du prix sur la production alors que la prévisibilité des prix a un effet positif sur la quantité produite. Comme attendu, nous constatons que l’application du programme d’assurance-stabilisation des revenus agricoles (ASRA) au Québec induit une plus importante sensibilité de l’offre par rapport au prix effectif (le prix incluant la compensation de l’ASRA) que par rapport au prix du marché. Par ailleurs, l’offre est moins sensible au prix des intrants qu’au prix de l’output. La diminution de l’aversion au risque de producteur est une autre conséquence de l’application de ce programme. En outre, l’estimation de la prime marginale relative au risque révèle que le producteur du maïs est le producteur le moins averse au risque (comparativement à celui de porc ou d’agneau). Le troisième chapitre consiste en l’analyse du changement de préférence du transformateur québécois du porc pour ce qui est du choix de marché. Nous supposons que le transformateur a la possibilité de fournir les produits sur deux marchés : étranger et local. Le modèle théorique explique l’offre relative comme étant une fonction à la fois d’anticipation relative et de volatilité relative des prix. Ainsi, ce modèle révèle que la sensibilité de l’offre relative par rapport à la volatilité relative de prix dépend de deux facteurs : d’une part, la part de l’exportation dans la production totale et d’autre part, l’élasticité de substitution entre les deux marchés. Un modèle à correction d’erreurs est utilisé lors d’estimation des paramètres du modèle. Les résultats montrent l’effet positif et significatif de l’anticipation relative du prix sur l’offre relative à court terme. Ces résultats montrent donc qu’une hausse de la volatilité du prix sur le marché étranger par rapport à celle sur le marché local entraine une baisse de l’offre relative sur le marché étranger à long terme. De plus, selon les résultats, les marchés étranger et local sont plus substituables à long terme qu’à court terme.
Resumo:
Post inhibitory rebound is a nonlinear phenomenon present in a variety of nerve cells. Following a period of hyper-polarization this effect allows a neuron to fire a spike or packet of spikes before returning to rest. It is an important mechanism underlying central pattern generation for heartbeat, swimming and other motor patterns in many neuronal systems. In this paper we consider how networks of neurons, which do not intrinsically oscillate, may make use of inhibitory synaptic connections to generate large scale coherent rhythms in the form of cluster states. We distinguish between two cases i) where the rebound mechanism is due to anode break excitation and ii) where rebound is due to a slow T-type calcium current. In the former case we use a geometric analysis of a McKean type model to obtain expressions for the number of clusters in terms of the speed and strength of synaptic coupling. Results are found to be in good qualitative agreement with numerical simulations of the more detailed Hodgkin-Huxley model. In the second case we consider a particular firing rate model of a neuron with a slow calcium current that admits to an exact analysis. Once again existence regions for cluster states are explicitly calculated. Both mechanisms are shown to prefer globally synchronous states for slow synapses as long as the strength of coupling is sufficiently large. With a decrease in the duration of synaptic inhibition both systems are found to break into clusters. A major difference between the two mechanisms for cluster generation is that anode break excitation can support clusters with several groups, whilst slow T-type calcium currents predominantly give rise to clusters of just two (anti-synchronous) populations.
Resumo:
Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70\% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.
Resumo:
Embryo implantation into the endometrium is a complex biological process involving the integration of steroid hormone signaling, endometrial tissue remodeling and maternal- fetal communications. A successful pregnancy is the outcome of the timely integration of these events during the early stages of implantation. The involvement of ovarian steroid hormones, estrogen (E) and progesterone (P), acting through their cognate receptors, is essential for uterine functions during pregnancy. The molecular mechanisms that control the process of implantation are undergoing active exploration. Through our recent efforts, we identified the transcription factor, CCAAT Enhancer Binding Protein Beta (C/EBPb) as a prominent target of estrogen and progesterone signaling in the uterus. The development of a C/EBPb-null mouse model, which is infertile, presented us with an opportunity to analyze the role of this molecule in uterine function. We discovered that C/EBPb functions in two distinct manners: (i) by acting as a mediator of E-induced proliferation of the uterine epithelium and (ii) by controlling uterine stromal cell differentiation, a process known as decidualization, during pregnancy. My studies have delineated important mechanisms by which E regulates C/EBPb expression to induce DNA replication and prevent apoptosis of uterine epithelial cells during E-induced epithelial growth. In subsequent studies, I analyzed the role of C/EBPb in decidualization and uncovered a unique mechanism by which C/EBPb regulates the synthesis of a unique laminin-containing extracellular matrix (ECM) that supports stromal cell differentiation and embryo invasion. In order to better define the role of laminin in implantation, we developed a laminin gamma 1-conditional knockout mouse model. This is currently an area of ongoing investigation. The information gained from our analysis of C/EBPb function in the uterus provides new insights into the mechanisms of steroid hormone action during early pregnancy. Ultimately, our findings may aid in the understanding of dysregulation of hormone-controlled pathways that underlie early pregnancy loss and infertility in women.
Resumo:
The objective of the study is to identify the 3D behaviour of an adhesive in an assembly, and to take into account the effect of ageing in a marine environment. To that end, three different tests were employed. Gravimetric analyses were used to determine the water diffusion kinetics in the adhesive. Bulk tensile tests were performed to highlight the effects of humid ageing on the adhesive behaviour. Modified Arcan tests were performed for several ageing times to obtain the experimental database which was necessary to identify constitutive models. A Mahnken-Schlimmer type model was determined for the unaged state according to a procedure developed in a previous study. This identification used inverse techniques. It was based on the unaged modified Arcan results and on a coupling between an optimisation routine and finite-element analysis. Then, a global inverse identification procedure was developed. Its aim was to relate the unaged parameters to the moisture concentration and overcome the difficulties usually associated with ageing of bonded assemblies in a humid environment: a non-uniformity of the stress state and a gradient of mechanical properties in the adhesive. This procedure was similar to the one used in the first part but needed modified Arcan results for several ageing times. It also required an initial assumption for the evolution of the Mahnken-Schlimmer parameters with the moisture concentration.