931 resultados para Dimensionally stable anode
Resumo:
[cat] En aquest treball caracteritzem les solucions puntuals de jocs cooperatius d'utilitat transferible que compleixen selecció del core i monotonia agregada. També mostrem que aquestes dues propietats són compatibles amb la individualitat racional, la propietat del jugador fals i la propietat de simetria. Finalment, caracteritzem les solucions puntuals que compleixen les cinc propietats a l'hora.
Resumo:
α-Synuclein aggregation and accumulation in Lewy bodies are implicated in progressive loss of dopaminergic neurons in Parkinson disease and related disorders. In neurons, the Hsp70s and their Hsp40-like J-domain co-chaperones are the only known components of chaperone network that can use ATP to convert cytotoxic protein aggregates into harmless natively refolded polypeptides. Here we developed a protocol for preparing a homogeneous population of highly stable β-sheet enriched toroid-shaped α-Syn oligomers with a diameter typical of toxic pore-forming oligomers. These oligomers were partially resistant to in vitro unfolding by the bacterial Hsp70 chaperone system (DnaK, DnaJ, GrpE). Moreover, both bacterial and human Hsp70/Hsp40 unfolding/refolding activities of model chaperone substrates were strongly inhibited by the oligomers but, remarkably, not by unstructured α-Syn monomers even in large excess. The oligomers acted as a specific competitive inhibitor of the J-domain co-chaperones, indicating that J-domain co-chaperones may preferably bind to exposed bulky misfolded structures in misfolded proteins and, thus, complement Hsp70s that bind to extended segments. Together, our findings suggest that inhibition of the Hsp70/Hsp40 chaperone system by α-Syn oligomers may contribute to the disruption of protein homeostasis in dopaminergic neurons, leading to apoptosis and tissue loss in Parkinson disease and related neurodegenerative diseases.
Resumo:
Matrix attachment regions are DNA sequences found throughout eukaryotic genomes that are believed to define boundaries interfacing heterochromatin and euchromatin domains, thereby acting as epigenetic regulators. When included in expression vectors, MARs can improve and sustain transgene expression, and a search for more potent novel elements is therefore actively pursued to further improve recombinant protein production. Here we describe the isolation of new MARs from the mouse genome using a modified in silico analysis. One of these MARs was found to be a powerful activator of transgene expression in stable transfections. Interestingly, this MAR also increased GFP and/or immunoglobulin expression from some but not all expression vectors in transient transfections. This effect was attributed to the presence or absence of elements on the vector backbone, providing an explanation for earlier discrepancies as to the ability of this class of elements to affect transgene expression under such conditions.
Resumo:
Oxalic and oxamic acids are the ultimate and more persistent by-products of the degradation of N-aromatics by electrochemical advanced oxidation processes (EAOPs). In this paper, the kinetics and oxidative paths of these acids have been studied for several EAOPs using a boron-doped diamond (BDD) anode and a stainless steel or an air-diffusion cathode. Anodic oxidation (AO-BDD) in the presence of Fe2+ (AO-BDD-Fe2+) and under UVA irradiation (AO-BDD-Fe2+-UVA), along with electro-Fenton (EF-BDD), was tested. The oxidation of both acids and their iron complexes on BDD was clarified by cyclic voltammetry. AO-BDD allowed the overall mineralization of oxalic acid, but oxamic acid was removed much more slowly. Each acid underwent a similar decay in AO-BDD-Fe2+ and EFBDD, as expected if its iron complexes were not attacked by hydroxyl radicals in the bulk. The faster and total mineralization of both acids was achieved in AO-BDD-Fe2+-UVA due to the high photoactivity of their Fe(III) complexes that were continuously regenerated by oxidation of their Fe(II) complexes. Oxamic acid always released a larger proportion of NH4 + than NO3- ion, as well as volatile NOx species. Both acids were independently oxidized at the anode in AO-BDD, but in AO-BDD-Fe2+-UVA oxamic acid was more slowlydegraded as its content decreased, without significant effect on oxalic acid decay. The increase in current density enhanced the oxidation power of the latter method, with loss of efficiency. High Fe2+ contents inhibited the oxidation of Fe(II) complexes by the competitive oxidation of Fe2+ to Fe3+. Low current densities and Fe2+ contents are preferable to remove more efficiently these acids by the most potent AO-BDD-Fe2+-UVA method.
Resumo:
Quantitative knowledge of the turnover of different leukocyte populations is a key to our understanding of immune function in health and disease. Much progress has been made thanks to the introduction of stable isotope labeling, the state-of-the-art technique for in vivo quantification of cellular life spans. Yet, even leukocyte life span estimates on the basis of stable isotope labeling can vary up to 10-fold among laboratories. We investigated whether these differences could be the result of variances in the length of the labeling period among studies. To this end, we performed deuterated water-labeling experiments in mice, in which only the length of label administration was varied. The resulting life span estimates were indeed dependent on the length of the labeling period when the data were analyzed using a commonly used single-exponential model. We show that multiexponential models provide the necessary tool to obtain life span estimates that are independent of the length of the labeling period. Use of a multiexponential model enabled us to reduce the gap between human T-cell life span estimates from 2 previously published labeling studies. This provides an important step toward unambiguous understanding of leukocyte turnover in health and disease.
Resumo:
Hsp70s are highly conserved ATPase molecular chaperones mediating the correct folding of de novo synthesized proteins, the translocation of proteins across membranes, the disassembly of some native protein oligomers, and the active unfolding and disassembly of stress-induced protein aggregates. Here, we bring thermodynamic arguments and biochemical evidences for a unifying mechanism named entropic pulling, based on entropy loss due to excluded-volume effects, by which Hsp70 molecules can convert the energy of ATP hydrolysis into a force capable of accelerating the local unfolding of various protein substrates and, thus, perform disparate cellular functions. By means of entropic pulling, individual Hsp70 molecules can accelerate unfolding and pulling of translocating polypeptides into mitochondria in the absence of a molecular fulcrum, thus settling former contradictions between the power-stroke and the Brownian ratchet models for Hsp70-mediated protein translocation across membranes. Moreover, in a very different context devoid of membrane and components of the import pore, the same physical principles apply to the forceful unfolding, solubilization, and assisted native refolding of stable protein aggregates by individual Hsp70 molecules, thus providing a mechanism for Hsp70-mediated protein disaggregation.
Resumo:
A high-resolution carbon and oxygen isotope analysis of Late Oxfordian-Early Kimmeridgian deep-shelf sediments of southern Germany is combined with investigation of nannofossil assemblage composition and sedimentological interpretations in order to evaluate the impact of regional palaeoenvironmental conditions on isotopic composition of carbonates. This study suggests that carbonate mud was essentially derived from the Jura shallow platform environments and also that the isotopic signature of carbonates deposited in the Swabian Alb deep shelf indirectly expresses the palaeoenvironmental evolution of the platform. Short-term fluctuations in delta(13) C and delta(18)O are probably controlled by changes in salinity (fresh-water input versus evaporation) in platform environments. Long-term fluctuations in carbon and oxygen isotope record throughout the Late Oxfordian-Early Kimmeridgian result from the interplay of increasing temperature and decreasing humidity, which both control the trophic level. Changes from mesotrophic to oligotrophic conditions in platform environments and in the deep-shelf surface waters are inferred. During the Late Oxfordian (Bimammatum Subzone to Planula Zone), the delta(13)C curve displays a positive shift of about 1 parts per thousand, which is comparable in intensity to global perturbations of the carbon cycle. This evident isotopic shift has not been documented yet in other basinal settings. It can be reasonably explained by local palaeoenvironmental changes on the Jura platform (salinity, temperature, and nutrient availability) that controlled platform carbonate production, and the geochemistry of overlying waters. However, increasing carbonate production on the Jura platform and related positive delta(13)C shifts recorded in the Swabian Alb deep shelf are the regional signatures of climatic changes affecting other palaeogeographical domains of Europe in which the carbonate production increased throughout the Late Oxfordian. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Misfolded polypeptide monomers may be regarded as the initial species of many protein aggregation pathways, which could accordingly serve as primary targets for molecular chaperones. It is therefore of paramount importance to study the cellular mechanisms that can prevent misfolded monomers from entering the toxic aggregation pathway and moreover rehabilitate them into active proteins. Here, we produced two stable misfolded monomers of luciferase and rhodanese, which we found to be differently processed by the Hsp70 chaperone machinery and whose conformational properties were investigated by biophysical approaches. In spite of their monomeric nature, they displayed enhanced thioflavin T fluorescence, non-native β-sheets, and tertiary structures with surface-accessible hydrophobic patches, but differed in their conformational stability and aggregation propensity. Interestingly, minor structural differences between the two misfolded species could account for their markedly different behavior in chaperone-mediated unfolding/refolding assays. Indeed, only a single DnaK molecule was sufficient to unfold by direct clamping a misfolded luciferase monomer, while, by contrast, several DnaK molecules were necessary to unfold the more resistant misfolded rhodanese monomer by a combination of direct clamping and cooperative entropic pulling.
Resumo:
Peak metamorphic temperatures for the coesite-pyrope-bearing whiteschists from the Dora Maira Massif, western Alps were determined with oxygen isotope thermometry. The deltaO-18(SMOW) values of the quartz (after coesite) (delta O-18 = 8.1 to 8.6 parts per thousand, n = 6), phengite (6.2 to 6.4 parts per thousand, n = 3), kyanite (6.1 parts per thousand, n = 2), garnet (5.5 to 5.8 parts per thousand, n = 9), ellenbergerite (6.3 parts per thousand, n = 1) and rutile (3.3. to 3.6 parts per thousand, n = 3) reflect isotopic equilibrium. Temperature estimates based on quartz-garnet-rutile fractionation are 700-750-degrees-C. Minimum pressures are 31-32 kb based on the pressure-sensitive reaction pyrope + coesite = kyanite + enstatite. In order to stabilize pyrope and coesite by the temperature-sensitive dehydration reaction talc + kyanite = pyrope + coesite + H2O, the a(H2O) must be reduced to 0.4-0.75 at 700 750-degrees-C. The reduced a(H2O) cannot be due to dilution by CO2, as pyrope is not stable at X (CO2) > 0.02 (T = 750-degrees-C; P = 30 kb). In the absence of a more exotic fluid diluent (e.g. CH4 or N2), a melt phase is required. Granite solidus temperatures are approximately 680-degrees-C/30 kb at a(H2O) = 1.0 and are calculated to be approximately 70-degrees-C higher at a(H2O) = 0.7, consistent with this hypothesis. Kyanite-jadeite-quartz bands may represent a relict melt phase. Peak P-T-f(H2O) estimates for the whiteschist are 34 +/- 2 kb, 700-750-degrees-C and 0.4-0.75. The oxygen isotope fractionation between quartz (deltaO-18 = 11.6%.) and garnet (deltaO-18 = 8.7 parts per thousand) in the surrounding orthognesiss is identical to that in the coesite-bearing unit, suggesting that the two units shared a common, final metamorphic history. Hydrogen isotope measurements were made on primary talc and phengite (deltaD(smow) = -27 to -32 parts per thousand), on secondary talc and chlorite after pyrope (deltaD = - 39 to - 44 parts per thousand) and on the surrounding biotite (deltaD = -64 parts per thousand) and phengite (deltaD = -44 parts per thousand) gneiss. All phases appear to be in near-equilibrium. The very high deltaD values for the primary hydrous phases is consistent with an initial oceanic-derived/connate fluid source. The fluid source for the retrograde talc + chlorite after pyrope may be fluids evolved locally during retrograde melt crystallization. The similar deltaD, but dissimilar deltaO-18 values of the coesite-bearing whiteschists and hosting orthogneiss suggest that the two were in hydrogen isotope equilibrium, but not oxygen isotope equilibrium. The unusual hydrogen and oxygen isotope compositions of the coesite-bearing unit can be explained as the result of metasomatism from slab-derived fluids at depth.
Resumo:
New isotopic results on bulk carbonate and mollusc (gastropods and bivalves) samples from Lake Geneva (Switzerland), spanning the period from the Oldest Dryas to the present day, are compared with pre-existing stable isotope data. According to preliminary calibration of modern samples, Lake Geneva endogenic calcite precipitates at or near oxygen isotopic equilibrium with ambient water, confirming the potential of this large lake to record paleoenvironmental and paleoclimatic changes. The onset of endogenic calcite precipitation at the beginning of the Allerod biozone is clearly indicated by the oxygen isotopic signature of bulk carbonate. A large change in delta(13)C values occurs during the Preboreal. This carbon shift is likely to be due to a change in bioproductivity and/or to a `'catchment effect'', the contribution of biogenic CO2 from the catchment area to the dissolved inorganic carbon reservoir of the lake water becoming significant only during the Preboreal. Gastropods are confirmed as valuable for studies of changes in paleotemperature and in paleowater isotopic composition, despite the presence of a vital effect. Mineralogical evidence indicates an increased detrital influence upon sedimentation since the Subboreal time period. On the other hand, stable isotope measurements of Subatlantic carbonate sediments show values comparable to those of pure endogenic calcite and of gastropods (taking into account the vital effect). This apparent disagreement still remains difficult to explain.
Resumo:
Isotopic analyses on bulk carbonates are considered a useful tool for palaeoclimatic reconstruction assuming calcite precipitation occurring at oxygen isotope equilibrium with local water and detrital carbonate input being absent or insignificant. We present results from Lake Neuchatel (western Switzerland) that demonstrate equilibrium precipitation of calcite, except during high productivity periods, and the presence of detrital and resuspended calcite. Mineralogy, geochemistry and stable isotope values of Lake Neuchatel trap sediments and adjacent rivers suspension were studied. Mineralogy of suspended matter in the major inflowing rivers documents an important contribution of detrital carbonates, predominantly calcite with minor amounts of dolomite and ankerite. Using mineralogical data, the quantity of allochthonous calcite can be estimated by comparing the ratio ankerite + dolomite/calcite + ankerite + dolomite in the inflowing rivers and in the traps. Material taken from sediment traps shows an evolution from practically pure endogenic calcite in summer (10-20% detrital material) to higher percentages of detrital material in winter (up to 20-40%). Reflecting these mineralogical variations, delta(13)C and delta(18)O values of calcite from sediment traps are more negative in summer than in winter times. Since no significant variations in isotopic composition of lake water were detected over one year, factors controlling oxygen isotopic composition of calcite in sediment traps are the precipitation temperature, and the percentage of resuspended and detrital calcite. Samples taken close to the river inflow generally have higher delta values than the others, confirming detrital influence. SEM and isotopic studies on different size fractions (<2, 2-6, 6-20, 20-60, >60 mu m) of winter and summer samples allowed the recognition of resuspension and to separate new endogenic calcite from detrital calcite. Fractions >60 and (2 mu m have the highest percentage of detritus, Fractions 2-6 and 6-20 mu m are typical for the new endogenic calcite in summer, as given by calculations assuming isotopic equilibrium with local water. In winter such fractions show similar values than in summer, indicating resuspension. Using the isotopic composition of sediment traps material and of different size fractions, as well as the isotopic composition of lake water, the water temperature measurements and mineralogy, we re-evaluated the bulk carbonate potential for palaeoclimatic reconstruction in the presence of detrital and re-suspended calcite. This re-evaluation leads to the following conclusion: (1) the endogenic signal can be amplified by applying a particle-size separation, once the size of endogenic calcite is known from SEM study; (2) resuspended calcite does not alter the endogenic signal, but it lowers the time resolution; (3) detrital input decreases at increasing distances from the source, and it modifies the isotopic signal only when very abundant; (4) influence of detrital calcite on bulk sediment isotopic composition can be calculated. (C) 1998 Elsevier Science B.V. All rights reserved.